Alterations of sleep initiation in NREM parasomnia after sleep deprivation - A multimodal pilot study

. 2023 Dec 15 ; 6 () : 100086. [epub] 20230914

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37745863
Odkazy

PubMed 37745863
PubMed Central PMC10511487
DOI 10.1016/j.sleepx.2023.100086
PII: S2590-1427(23)00026-5
Knihovny.cz E-zdroje

OBJECTIVES: NREM parasomnias also known as disorders of arousal (DOA) are characterised by abnormal motor and autonomic activation during arousals primarily from slow wave sleep. Dissociative state between sleep and wake is likely responsible for clinical symptoms of DOA. We therefore investigated potential dissociation outside of parasomnic events by using simultaneous 256-channel EEG (hdEEG) and functional magnetic resonance imaging (fMRI). METHODS: Eight DOA patients (3 women, mean age = 27.8; SD = 4.2) and 8 gender and age matched healthy volunteers (3 women, mean age = 26,5; SD = 4.0) were included into the study. They underwent 30-32 h of sleep deprivation followed by hdEEG and fMRI recording. We determined 2 conditions: falling asleep (FA) and arousal (A), that occurred outside of deep sleep and/or parasomnic event. We used multimodal approach using data obtained from EEG, fMRI and EEG-fMRI integration approach. RESULTS: DOA patients showed increase in delta and beta activity over postcentral gyrus and cuneus during awakening period. This group expressed increased connectivity between motor cortex and cingulate during arousals unrelated to parasomnic events in the beta frequency band. They also showed lower connectivity between different portions of cingulum. In contrast, the greater connectivity was found between thalamus and some cortical areas, such as occipital cortex. CONCLUSION: Our findings suggest a complex alteration in falling asleep and arousal mechanisms at both subcortical and cortical levels in response to sleep deprivation. As this alteration is present also outside of slow wave sleep and/or parasomnic episodes we believe this could be a trait factor of DOA.

Zobrazit více v PubMed

American Association Of Sleep Medicine . disorders—third ed. 2014. International classification of sleep. ICSD-3)

Howell M.J. Parasomnias: an updated review. Neurotherapeutics. 2012;9:753–775. PubMed PMC

Lopez R., Jaussent I., Dauvilliers Y. Objective daytime sleepiness in patients with somnambulism or sleep terrors. Neurology. 2014;83:2070–2076. PubMed

Castelnovo A., Lopez R., Proserpio P., Nobili L., Dauvilliers Y. NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol. 2018;14:470–481. PubMed

Dang-Vu T.T., Zadra A., Labelle M.A., Petit D., Soucy J.P., Montplaisir J. Sleep deprivation reveals altered brain perfusion patterns in somnambulism. PLoS One. 2015;10 PubMed PMC

Joncas S., Zadra A., Montplaisir J. Paquet A.J. The value of sleep deprivation as a diagnostic tool in adult sleepwalkers. Neurology. 2002;58(6):936–940. PubMed

Labelle M.A., Dang-Vu T.T., Petit D., Desautels A., et al. Sleep deprivation impairs inhibitory control during wakefulness in adult sleepwalkers. J Sleep Res. 2015;24(6):658–665. PubMed

Pilon M., Montplaisir J., Zadra A.A. Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals. Neurology. 2008;70(24):2284–2290. PubMed

Pilon M., Zadra A., Joncas S., Montplaisir J. Hypersynchronous delta waves and somnambulism: brain topography and effect of sleep deprivation. Sleep. 2006;29:77–84. PubMed

Terzaghi M., Sartori I., Tassi L., Didato G., Rustioni V., Lorusso G., Manni R., Nobili L. Evidence of dissociated arousal states during NREM parasomnia from an intracerebral neurophysiological study. Sleep. 2009;32:409–412. PubMed PMC

Januszko P., Niemcewicz S., Gajda T., Wolynczyk-Gmaj D., Piotrowska A.J., Gmaj B., Piotrowski T., Szelenberger W. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging. Clin Neurophysiol. 2016;127:530–536. PubMed

Desjardins M.E., Carrier J., Lina J.M., Fortin M., Gosselin N., Montplaisir J., Zadra A. EEG functional connectivity prior to sleepwalking: evidence of interplay between sleep and wakefulness. Sleep. 2017;40 PubMed PMC

Castelnovo A., Riedner B.A., Smith R.F., Tononi G., Boly M., Benca R.M. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. Sleep. 2016;39:1815–1825. PubMed PMC

Bassetti C., Vella S., Donati F., Wielepp P., Weder B. SPECT during sleepwalking. Lancet. 2000;356:484–485. PubMed

Desjardins M.E., Baril A.A., Soucy J.P., Dang-Vu T.T., Desautels A., Petit D., Montplaisir J., Zadra A. Altered brain perfusion patterns in wakefulness and slow-wave sleep in sleepwalkers. Sleep. 2018;41 PubMed PMC

Maquet P., Degueldre C., Delfiore G., Aerts J., Peters J.M., Luxen A., Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17:2807–2812. PubMed PMC

Heidbreder A., Stefani A., Brandauer E., Steiger R., Kremser C., Gizewski E.R., Young P., Poewe W., Hogl B., Scherfler C. Gray matter abnormalities of the dorsal posterior cingulate in sleep walking. Sleep Med. 2017;36:152–155. PubMed

Hrozanova M., Morrison I., Riha R.L. Adult NREM parasomnias: an update. Clocks Sleep. 2019;1:87–104. PubMed PMC

Baker R., Gent T.C., Yang Q., Parker S., Vyssotski A.L., Wisden W., Brickley S.G., Franks N.P. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. 2014;34:13326–13335. PubMed PMC

Gent T.C., Bandarabadi M., Herrera C.G., Adamantidis A.R. Thalamic dual control of sleep and wakefulness. Nat Neurosci. 2018;21:974–984. PubMed PMC

Gent T.C., Bassetti C., Adamantidis A.R. Sleep-wake control and the thalamus. Curr Opin Neurobiol. 2018;52:188–197. PubMed

Magnin M., Rey M., Bastuji H., Guillemant P., Mauguiere F., Garcia-Larrea L. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc Natl Acad Sci U S A. 2010;107:3829–3833. PubMed PMC

Nir Y., Andrillon T., Marmelshtein A., Suthana N., Cirelli C., Tononi G., Fried I. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med. 2017;23:1474–1480. PubMed PMC

Pressman M.R., Bornemann M.C. The ICSD-3 NREM parasomnia section is evidence based resulting from international collaboration, consensus and best practices. J Clin Sleep Med. 2015;11:187–188. PubMed PMC

Gauld C., Lopez R., Geoffroy P.A., Morin C.M., Guichard K., Giroux E., Dauvilliers Y., Dumas G., Philip P., Micoulaud-Franchi J.A. A systematic analysis of ICSD-3 diagnostic criteria and proposal for further structured iteration. Sleep Med Rev. 2021;58 PubMed

Siclari F., Bernardi G., Riedner B.A., Larocque J.J., Benca R.M., Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep. 2014;37:1621–1637. PubMed PMC

Redcay E., Kennedy D.P., Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage. 2007;38:696–707. PubMed

Horovitz S.G., Fukunaga M., De Zwart J.A., Van Gelderen P., Fulton S.C., Balkin T.J., Duyn J.H. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp. 2008;29:671–682. PubMed PMC

Huster R.J., Debener S., Eichele T., Herrmann C.S. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32:6053–6060. PubMed PMC

Piorecky M., Koudelka V., Miletinova E., Buskova J., Strobl J., Horacek J., Brunovsky M., Jiricek S., Hlinka J., Tomecek D., Piorecka V. Simultaneous fMRI-EEG-based characterisation of NREM parasomnia disease: methods and limitations. Diagnostics. 2020;10 PubMed PMC

Berry R.B., Brooks R., Gamaldo C., Harding S.M., Lloyd R.M., Quan S.F., Troester M.T., Vaughn B.V. AASM scoring manual updates for 2017 (version 2.4) J Clin Sleep Med. 2017;13:665–666. PubMed PMC

Niazy R.K., Beckmann C.F., Iannetti G.D., Brady J.M., Smith S.M. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28:720–737. PubMed

Marino M., Liu Q., Koudelka V., Porcaro C., Hlinka J., Wenderoth N., Mantini D. Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep. 2018;8:8902. PubMed PMC

Piorecky M., Koudelka V., Strobl J., Brunovsky M., Krajca V. Artifacts in simultaneous hdeeg/fmri imaging: a nonlinear dimensionality reduction approach. Sensors. 2019;19(20):4454. PubMed PMC

Keator D.B., Gadde S., Grethe J.S., Taylor D.V., Potkin S.G., First B. A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics. 2006;4:199–212. PubMed

Pascual-Marqui R.D. 2007. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv preprint arXiv:0710.3341.

Oostenveld R., Fries P., Maris E., Schoffelen J.M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011 2011. PubMed PMC

Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. PubMed

Xia M., Wang J., He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8 PubMed PMC

Jajcay L., et al. Brain functional connectivity asymmetry: left hemisphere is more modular. Symmetry. 2022;14(4):833.

Camaioni M., Scarpelli S., Gorgoni M., Alfonsi V., De Gennaro L. EEG patterns prior to motor activations of parasomnias: a systematic review. Nat Sci Sleep. 2021;13:713–728. PubMed PMC

Terzaghi M., Ratti P.L., Manni F., Manni R. Sleep paralysis in narcolepsy: more than just a motor dissociative phenomenon? Neurol Sci. 2012;33:169–172. PubMed

Sarasso S., Pigorini A., Proserpio P., Gibbs S.A., Massimini M., Nobili L. Fluid boundaries between wake and sleep: experimental evidence from Stereo-EEG recordings. Arch Ital Biol. 2014;152:169–177. PubMed

Pressman M.R. Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev. 2007;11:5–30. discussion 31-3. PubMed

Chen T.L., Babiloni C., Ferretti A., Perrucci M.G., Romani G.L., Rossini P.M., Tartaro A., Del Gratta C. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. Neuroimage. 2008;40:1765–1771. PubMed

Espa F., Ondze B., Deglise P., Billiard M., Besset A. Sleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrors. Clin Neurophysiol. 2000;111:929–939. PubMed

Guilleminault C., Poyares D., Aftab F.A., Palombini L. Sleep and wakefulness in somnambulism: a spectral analysis study. J Psychosom Res. 2001;51:411–416. PubMed

Perrault R., Carrier J., Desautels A., Montplaisir J., Zadra A. Electroencephalographic slow waves prior to sleepwalking episodes. Sleep Med. 2014;15:1468–1472. PubMed

Gaudreau H., Joncas S., Zadra A., Montplaisir J. Dynamics of slow-wave activity during the NREM sleep of sleepwalkers and control subjects. Sleep. 2000;23:755–760. PubMed

Pressman M.R. Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev. 2007;11:5–30. PubMed

Akert K. The anatomical substrate of sleep. Prog Brain Res. 1965;18:9–19. PubMed

Herrera C.G., Cadavieco M.C., Jego S., Ponomarenko A., Korotkova T., Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 2016;19:290–298. PubMed PMC

Timofeev I., Grenier F., Bazhenov M., Sejnowski T.J., Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cerebr Cortex. 2000;10:1185–1199. PubMed

Sherman S.M. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016;19:533–541. PubMed

Wang L., Li K., Zhang Q.E., Zeng Y.W., Jin Z., Dai W.J., Su Y.A., Wang G., Tan Y.L., Yu X., Si T.M. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PLoS One. 2013;8 PubMed PMC

Maquet P., Peters J., Aerts J., Delfiore G., Degueldre C., Luxen A., Franck G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996;383:163–166. PubMed

Bosch O.G., Rihm J.S., Scheidegger M., Landolt H.P., Stampfli P., Brakowski J., Esposito F., Rasch B., Seifritz E. Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans. Proc Natl Acad Sci U S A. 2013;110:19597–19602. PubMed PMC

Bodizs R., Sverteczki M., Lazar A.S., Halasz P. Human parahippocampal activity: non-REM and REM elements in wake-sleep transition. Brain Res Bull. 2005;65:169–176. PubMed

Siclari F., Valli K., Arnulf I. Dreams and nightmares in healthy adults and in patients with sleep and neurological disorders. Lancet Neurol. 2020;19:849–859. PubMed

Mukhametov L.M., Supin A.Y., Polyakova I.G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 1977;134:581–584. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...