Alterations of sleep initiation in NREM parasomnia after sleep deprivation - A multimodal pilot study
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37745863
PubMed Central
PMC10511487
DOI
10.1016/j.sleepx.2023.100086
PII: S2590-1427(23)00026-5
Knihovny.cz E-zdroje
- Klíčová slova
- Disorders of arousal, Functional brain imaging, HdEEG and fMRI integration, High density EEG, Parasomnias, Slow wave sleep,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: NREM parasomnias also known as disorders of arousal (DOA) are characterised by abnormal motor and autonomic activation during arousals primarily from slow wave sleep. Dissociative state between sleep and wake is likely responsible for clinical symptoms of DOA. We therefore investigated potential dissociation outside of parasomnic events by using simultaneous 256-channel EEG (hdEEG) and functional magnetic resonance imaging (fMRI). METHODS: Eight DOA patients (3 women, mean age = 27.8; SD = 4.2) and 8 gender and age matched healthy volunteers (3 women, mean age = 26,5; SD = 4.0) were included into the study. They underwent 30-32 h of sleep deprivation followed by hdEEG and fMRI recording. We determined 2 conditions: falling asleep (FA) and arousal (A), that occurred outside of deep sleep and/or parasomnic event. We used multimodal approach using data obtained from EEG, fMRI and EEG-fMRI integration approach. RESULTS: DOA patients showed increase in delta and beta activity over postcentral gyrus and cuneus during awakening period. This group expressed increased connectivity between motor cortex and cingulate during arousals unrelated to parasomnic events in the beta frequency band. They also showed lower connectivity between different portions of cingulum. In contrast, the greater connectivity was found between thalamus and some cortical areas, such as occipital cortex. CONCLUSION: Our findings suggest a complex alteration in falling asleep and arousal mechanisms at both subcortical and cortical levels in response to sleep deprivation. As this alteration is present also outside of slow wave sleep and/or parasomnic episodes we believe this could be a trait factor of DOA.
3rd Faculty of Medicine Charles University Prague Ruská 87 Prague Czech Republic
Department of Biomedical Technology Faculty of Biomedical Engineering CTU Prague Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Topolova 748 Klecany Czech Republic
Zobrazit více v PubMed
American Association Of Sleep Medicine . disorders—third ed. 2014. International classification of sleep. ICSD-3)
Howell M.J. Parasomnias: an updated review. Neurotherapeutics. 2012;9:753–775. PubMed PMC
Lopez R., Jaussent I., Dauvilliers Y. Objective daytime sleepiness in patients with somnambulism or sleep terrors. Neurology. 2014;83:2070–2076. PubMed
Castelnovo A., Lopez R., Proserpio P., Nobili L., Dauvilliers Y. NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol. 2018;14:470–481. PubMed
Dang-Vu T.T., Zadra A., Labelle M.A., Petit D., Soucy J.P., Montplaisir J. Sleep deprivation reveals altered brain perfusion patterns in somnambulism. PLoS One. 2015;10 PubMed PMC
Joncas S., Zadra A., Montplaisir J. Paquet A.J. The value of sleep deprivation as a diagnostic tool in adult sleepwalkers. Neurology. 2002;58(6):936–940. PubMed
Labelle M.A., Dang-Vu T.T., Petit D., Desautels A., et al. Sleep deprivation impairs inhibitory control during wakefulness in adult sleepwalkers. J Sleep Res. 2015;24(6):658–665. PubMed
Pilon M., Montplaisir J., Zadra A.A. Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals. Neurology. 2008;70(24):2284–2290. PubMed
Pilon M., Zadra A., Joncas S., Montplaisir J. Hypersynchronous delta waves and somnambulism: brain topography and effect of sleep deprivation. Sleep. 2006;29:77–84. PubMed
Terzaghi M., Sartori I., Tassi L., Didato G., Rustioni V., Lorusso G., Manni R., Nobili L. Evidence of dissociated arousal states during NREM parasomnia from an intracerebral neurophysiological study. Sleep. 2009;32:409–412. PubMed PMC
Januszko P., Niemcewicz S., Gajda T., Wolynczyk-Gmaj D., Piotrowska A.J., Gmaj B., Piotrowski T., Szelenberger W. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging. Clin Neurophysiol. 2016;127:530–536. PubMed
Desjardins M.E., Carrier J., Lina J.M., Fortin M., Gosselin N., Montplaisir J., Zadra A. EEG functional connectivity prior to sleepwalking: evidence of interplay between sleep and wakefulness. Sleep. 2017;40 PubMed PMC
Castelnovo A., Riedner B.A., Smith R.F., Tononi G., Boly M., Benca R.M. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. Sleep. 2016;39:1815–1825. PubMed PMC
Bassetti C., Vella S., Donati F., Wielepp P., Weder B. SPECT during sleepwalking. Lancet. 2000;356:484–485. PubMed
Desjardins M.E., Baril A.A., Soucy J.P., Dang-Vu T.T., Desautels A., Petit D., Montplaisir J., Zadra A. Altered brain perfusion patterns in wakefulness and slow-wave sleep in sleepwalkers. Sleep. 2018;41 PubMed PMC
Maquet P., Degueldre C., Delfiore G., Aerts J., Peters J.M., Luxen A., Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17:2807–2812. PubMed PMC
Heidbreder A., Stefani A., Brandauer E., Steiger R., Kremser C., Gizewski E.R., Young P., Poewe W., Hogl B., Scherfler C. Gray matter abnormalities of the dorsal posterior cingulate in sleep walking. Sleep Med. 2017;36:152–155. PubMed
Hrozanova M., Morrison I., Riha R.L. Adult NREM parasomnias: an update. Clocks Sleep. 2019;1:87–104. PubMed PMC
Baker R., Gent T.C., Yang Q., Parker S., Vyssotski A.L., Wisden W., Brickley S.G., Franks N.P. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. 2014;34:13326–13335. PubMed PMC
Gent T.C., Bandarabadi M., Herrera C.G., Adamantidis A.R. Thalamic dual control of sleep and wakefulness. Nat Neurosci. 2018;21:974–984. PubMed PMC
Gent T.C., Bassetti C., Adamantidis A.R. Sleep-wake control and the thalamus. Curr Opin Neurobiol. 2018;52:188–197. PubMed
Magnin M., Rey M., Bastuji H., Guillemant P., Mauguiere F., Garcia-Larrea L. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc Natl Acad Sci U S A. 2010;107:3829–3833. PubMed PMC
Nir Y., Andrillon T., Marmelshtein A., Suthana N., Cirelli C., Tononi G., Fried I. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med. 2017;23:1474–1480. PubMed PMC
Pressman M.R., Bornemann M.C. The ICSD-3 NREM parasomnia section is evidence based resulting from international collaboration, consensus and best practices. J Clin Sleep Med. 2015;11:187–188. PubMed PMC
Gauld C., Lopez R., Geoffroy P.A., Morin C.M., Guichard K., Giroux E., Dauvilliers Y., Dumas G., Philip P., Micoulaud-Franchi J.A. A systematic analysis of ICSD-3 diagnostic criteria and proposal for further structured iteration. Sleep Med Rev. 2021;58 PubMed
Siclari F., Bernardi G., Riedner B.A., Larocque J.J., Benca R.M., Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep. 2014;37:1621–1637. PubMed PMC
Redcay E., Kennedy D.P., Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage. 2007;38:696–707. PubMed
Horovitz S.G., Fukunaga M., De Zwart J.A., Van Gelderen P., Fulton S.C., Balkin T.J., Duyn J.H. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp. 2008;29:671–682. PubMed PMC
Huster R.J., Debener S., Eichele T., Herrmann C.S. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32:6053–6060. PubMed PMC
Piorecky M., Koudelka V., Miletinova E., Buskova J., Strobl J., Horacek J., Brunovsky M., Jiricek S., Hlinka J., Tomecek D., Piorecka V. Simultaneous fMRI-EEG-based characterisation of NREM parasomnia disease: methods and limitations. Diagnostics. 2020;10 PubMed PMC
Berry R.B., Brooks R., Gamaldo C., Harding S.M., Lloyd R.M., Quan S.F., Troester M.T., Vaughn B.V. AASM scoring manual updates for 2017 (version 2.4) J Clin Sleep Med. 2017;13:665–666. PubMed PMC
Niazy R.K., Beckmann C.F., Iannetti G.D., Brady J.M., Smith S.M. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28:720–737. PubMed
Marino M., Liu Q., Koudelka V., Porcaro C., Hlinka J., Wenderoth N., Mantini D. Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep. 2018;8:8902. PubMed PMC
Piorecky M., Koudelka V., Strobl J., Brunovsky M., Krajca V. Artifacts in simultaneous hdeeg/fmri imaging: a nonlinear dimensionality reduction approach. Sensors. 2019;19(20):4454. PubMed PMC
Keator D.B., Gadde S., Grethe J.S., Taylor D.V., Potkin S.G., First B. A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics. 2006;4:199–212. PubMed
Pascual-Marqui R.D. 2007. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv preprint arXiv:0710.3341.
Oostenveld R., Fries P., Maris E., Schoffelen J.M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011 2011. PubMed PMC
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. PubMed
Xia M., Wang J., He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8 PubMed PMC
Jajcay L., et al. Brain functional connectivity asymmetry: left hemisphere is more modular. Symmetry. 2022;14(4):833.
Camaioni M., Scarpelli S., Gorgoni M., Alfonsi V., De Gennaro L. EEG patterns prior to motor activations of parasomnias: a systematic review. Nat Sci Sleep. 2021;13:713–728. PubMed PMC
Terzaghi M., Ratti P.L., Manni F., Manni R. Sleep paralysis in narcolepsy: more than just a motor dissociative phenomenon? Neurol Sci. 2012;33:169–172. PubMed
Sarasso S., Pigorini A., Proserpio P., Gibbs S.A., Massimini M., Nobili L. Fluid boundaries between wake and sleep: experimental evidence from Stereo-EEG recordings. Arch Ital Biol. 2014;152:169–177. PubMed
Pressman M.R. Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev. 2007;11:5–30. discussion 31-3. PubMed
Chen T.L., Babiloni C., Ferretti A., Perrucci M.G., Romani G.L., Rossini P.M., Tartaro A., Del Gratta C. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. Neuroimage. 2008;40:1765–1771. PubMed
Espa F., Ondze B., Deglise P., Billiard M., Besset A. Sleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrors. Clin Neurophysiol. 2000;111:929–939. PubMed
Guilleminault C., Poyares D., Aftab F.A., Palombini L. Sleep and wakefulness in somnambulism: a spectral analysis study. J Psychosom Res. 2001;51:411–416. PubMed
Perrault R., Carrier J., Desautels A., Montplaisir J., Zadra A. Electroencephalographic slow waves prior to sleepwalking episodes. Sleep Med. 2014;15:1468–1472. PubMed
Gaudreau H., Joncas S., Zadra A., Montplaisir J. Dynamics of slow-wave activity during the NREM sleep of sleepwalkers and control subjects. Sleep. 2000;23:755–760. PubMed
Pressman M.R. Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev. 2007;11:5–30. PubMed
Akert K. The anatomical substrate of sleep. Prog Brain Res. 1965;18:9–19. PubMed
Herrera C.G., Cadavieco M.C., Jego S., Ponomarenko A., Korotkova T., Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 2016;19:290–298. PubMed PMC
Timofeev I., Grenier F., Bazhenov M., Sejnowski T.J., Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cerebr Cortex. 2000;10:1185–1199. PubMed
Sherman S.M. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016;19:533–541. PubMed
Wang L., Li K., Zhang Q.E., Zeng Y.W., Jin Z., Dai W.J., Su Y.A., Wang G., Tan Y.L., Yu X., Si T.M. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PLoS One. 2013;8 PubMed PMC
Maquet P., Peters J., Aerts J., Delfiore G., Degueldre C., Luxen A., Franck G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996;383:163–166. PubMed
Bosch O.G., Rihm J.S., Scheidegger M., Landolt H.P., Stampfli P., Brakowski J., Esposito F., Rasch B., Seifritz E. Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans. Proc Natl Acad Sci U S A. 2013;110:19597–19602. PubMed PMC
Bodizs R., Sverteczki M., Lazar A.S., Halasz P. Human parahippocampal activity: non-REM and REM elements in wake-sleep transition. Brain Res Bull. 2005;65:169–176. PubMed
Siclari F., Valli K., Arnulf I. Dreams and nightmares in healthy adults and in patients with sleep and neurological disorders. Lancet Neurol. 2020;19:849–859. PubMed
Mukhametov L.M., Supin A.Y., Polyakova I.G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 1977;134:581–584. PubMed