Artifacts in Simultaneous hdEEG/fMRI Imaging: A Nonlinear Dimensionality Reduction Approach

. 2019 Oct 14 ; 19 (20) : . [epub] 20191014

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31615138

Simultaneous recordings of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) are at the forefront of technologies of interest to physicians and scientists because they combine the benefits of both modalities-better time resolution (hdEEG) and space resolution (fMRI). However, EEG measurements in the scanner contain an electromagnetic field that is induced in leads as a result of gradient switching slight head movements and vibrations, and it is corrupted by changes in the measured potential because of the Hall phenomenon. The aim of this study is to design and test a methodology for inspecting hidden EEG structures with respect to artifacts. We propose a top-down strategy to obtain additional information that is not visible in a single recording. The time-domain independent component analysis algorithm was employed to obtain independent components and spatial weights. A nonlinear dimension reduction technique t-distributed stochastic neighbor embedding was used to create low-dimensional space, which was then partitioned using the density-based spatial clustering of applications with noise (DBSCAN). The relationships between the found data structure and the used criteria were investigated. As a result, we were able to extract information from the data structure regarding electrooculographic, electrocardiographic, electromyographic and gradient artifacts. This new methodology could facilitate the identification of artifacts and their residues from simultaneous EEG in fMRI.

Zobrazit více v PubMed

Ritter P., Villringer A. Simultaneous EEG–fMRI. Neurosci. Biobehav. Rev. 2006;30:823–838. doi: 10.1016/j.neubiorev.2006.06.008. PubMed DOI

Niazy R., Beckmann C., Iannetti G., Brady J., Smith S. Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage. 2005;28:720–737. doi: 10.1016/j.neuroimage.2005.06.067. PubMed DOI

Allen P.J., Polizzi G., Krakow K., Fish D.R., Lemieux L. Identification of EEG Events in the MR Scanner. NeuroImage. 1998;8:229–239. doi: 10.1006/nimg.1998.0361. PubMed DOI

Felblinger J., Slotboom J., Kreis R., Jung B., Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn. Reson. Med. 1999;41:715–721. doi: 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7. PubMed DOI

Kim H.C., Yoo S.S., Lee J.H. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG–fMRI data. NeuroImage. 2015;104:437–451. doi: 10.1016/j.neuroimage.2014.09.049. PubMed DOI

Nolan H., Whelan R., Reilly R. FASTER. J. Neurosci. Methods. 2010;192:152–162. doi: 10.1016/j.jneumeth.2010.07.015. PubMed DOI

Mognon A., Jovicich J., Bruzzone L., Buiatti M. ADJUST. Psychophysiology. 2011;48:229–240. doi: 10.1111/j.1469-8986.2010.01061.x. PubMed DOI

Chaumon M., Bishop D.V., Busch N.A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods. 2015;250:47–63. doi: 10.1016/j.jneumeth.2015.02.025. PubMed DOI

Blanco-Velasco M., Weng B., Barner K.E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 2008;38:1–13. doi: 10.1016/j.compbiomed.2007.06.003. PubMed DOI

Winkler I., Brandl S., Horn F., Waldburger E., Allefeld C., Tangermann M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2014;11 doi: 10.1088/1741-2560/11/3/035013. PubMed DOI

Viola F.C., Thorne J., Edmonds B., Schneider T., Eichele T., Debener S. Semi-automatic identification of independent components representing EEG artifact. Clin. Neurophysiol. 2009;120:868–877. doi: 10.1016/j.clinph.2009.01.015. PubMed DOI

Radüntz T., Scouten J., Hochmuth O., Meffert B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J. Neural Eng. 2017;14 doi: 10.1088/1741-2552/aa69d1. PubMed DOI

Kubota K.J., Chen J.A., Little M.A. Machine learning for large-scale wearable sensor data in Parkinson’s disease. Mov. Disord. 2016;31:1314–1326. doi: 10.1002/mds.26693. PubMed DOI

Schirrmeister R.T., Springenberg J.T., Fiederer L.D.J., Glasstetter M., Eggensperger K., Tangermann M., Hutter F., Burgard W., Ball T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017;38:5391–5420. doi: 10.1002/hbm.23730. PubMed DOI PMC

Koudelka V., Štrobl J., Piorecký M., Brunovský M., Krajča V. Nonlinear Dimensionality Reduction and Feature Analysis for Artifact Component Identification in hdEEG Datasets; Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018; Prague, Czech Republic. 3–8 June 2018; Singapore: Springer; 2019. pp. 415–419.

Nierhaus T., Gundlach C., Goltz D., Thiel S.D., Pleger B., Villringer A. Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI. NeuroImage. 2013;74:70–76. doi: 10.1016/j.neuroimage.2013.02.016. PubMed DOI

Oostenveld R., Fries P., Maris E., Schoffelen J.M. FieldTrip. Comput. Intell. Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. PubMed DOI PMC

Marino M., Liu Q., Koudelka V., Porcaro C., Hlinka J., Wenderoth N., Mantini D. Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-27187-6. PubMed DOI PMC

Lee T.W., Girolami M., Sejnowski T.J. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Comput. 1999;11:417–441. doi: 10.1162/089976699300016719. PubMed DOI

García-Alonso C.R., Pérez-Naranjo L.M., Fernández-Caballero J.C. Multiobjective evolutionary algorithms to identify highly autocorrelated areas. Ann. Oper. Res. 2014;219:187–202. doi: 10.1007/s10479-011-0841-3. DOI

Ester M., Kriegel H.P., Sander J., Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD. 1996;96:226–231.

Hou J., Morgan K., Tucker D.M., Konyn A., Poulsen C., Tanaka Y., Anderson E.W., Luu P. An improved artifacts removal method for high dimensional EEG. J. Neurosci. Methods. 2016;268:31–42. doi: 10.1016/j.jneumeth.2016.05.003. PubMed DOI

Plöchl M., Ossandón J.P., König P. Combining EEG and eye tracking. Front. Hum. Neurosci. 2012;6:278. doi: 10.3389/fnhum.2012.00278. PubMed DOI PMC

Coburn K.L., Moreno M.A. Facts and artifacts in brain electrical activity mapping. Brain Topogr. 1988;1:37–45. doi: 10.1007/BF01129338. PubMed DOI

Pearce R.K.B., Owen A., Daniel S., Jenner P., Marsden C.D. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J. Neural Transm. 1997;104:661–677. doi: 10.1007/BF01291884. PubMed DOI

Muthukumaraswamy S.D. High-frequency brain activity and muscle artifacts in MEG/EEG. Front. Hum. Neurosci. 2013;7:138. doi: 10.3389/fnhum.2013.00138. PubMed DOI PMC

McMenamin B.W., Shackman A.J., Greischar L.L., Davidson R.J. Electromyogenic artifacts and electroencephalographic inferences revisited. NeuroImage. 2011;54:4–9. doi: 10.1016/j.neuroimage.2010.07.057. PubMed DOI PMC

Goncharova I., McFarland D., Vaughan T., Wolpaw J. EMG contamination of EEG. Clin. Neurophysiol. 2003;114:1580–1593. doi: 10.1016/S1388-2457(03)00093-2. PubMed DOI

Flumeri G.D., Arico P., Borghini G., Colosimo A., Babiloni F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel; Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando, FL, USA. 16–20 August 2016; pp. 3187–3190. PubMed DOI

Picton T.W., van Roon P., Armilio M.L., Berg P., Ille N., Scherg M. The correction of ocular artifacts. Clin. Neurophysiol. 2000;111:53–65. doi: 10.1016/S1388-2457(99)00227-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...