Spatial (mis)match between EEG and fMRI signal patterns revealed by spatio-spectral source-space EEG decomposition

. 2025 ; 19 () : 1549172. [epub] 20250314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40161575

This study aimed to directly compare electroencephalography (EEG) whole-brain patterns of neural dynamics with concurrently measured fMRI BOLD data. To achieve this, we aim to derive EEG patterns based on a spatio-spectral decomposition of band-limited EEG power in the source-reconstructed space. In a large dataset of 72 subjects undergoing resting-state hdEEG-fMRI, we demonstrated that the proposed approach is reliable in terms of both the extracted patterns as well as their spatial BOLD signatures. The five most robust EEG spatio-spectral patterns not only include the well-known occipital alpha power dynamics, ensuring consistency with established findings, but also reveal additional patterns, uncovering new insights into brain activity. We report and interpret the most reproducible source-space EEG-fMRI patterns, along with the corresponding EEG electrode-space patterns, which are better known from the literature. The EEG spatio-spectral patterns show weak, yet statistically significant spatial similarity to their functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signatures, particularly in the patterns that exhibit stronger temporal synchronization with BOLD. However, we did not observe a statistically significant relationship between the EEG spatio-spectral patterns and the classical fMRI BOLD resting-state networks (as identified through independent component analysis), tested as the similarity between their temporal synchronization and spatial overlap. This provides evidence that both EEG (frequency-specific) power and the BOLD signal capture reproducible spatio-temporal patterns of neural dynamics. Instead of being mutually redundant, these only partially overlap, providing largely complementary information regarding the underlying low-frequency dynamics.

Zobrazit více v PubMed

Abou-Elseoud A., Starck T., Remes J., Nikkinen J., Tervonen O., Kiviniemi V. (2010). The effect of model order selection in group pica. Hum. Brain Mapp. 31, 1207–1216. 10.1002/hbm.20929 PubMed DOI PMC

Abreu R., Leal A., Figueiredo P. (2018). EEG-informed fMRI: a review of data analysis methods. Front. Hum. Neurosci. 12:29. 10.3389/fnhum.2018.00029 PubMed DOI PMC

Abreu R., Simões M., Castelo-Branco M. (2020). Pushing the limits of EEG: estimation of large-scale functional brain networks and their dynamics validated by simultaneous fMRI. Front. Neurosci. 14:323. 10.3389/fnins.2020.00323 PubMed DOI PMC

Asada H., Fukuda Y., Tsunoda S., Yamaguchi M., Tonoike M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci. Lett. 274, 29–32. 10.1016/S0304-3940(99)00679-5 PubMed DOI

Berger H. (1929). Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und nervenkrankheiten 87, 527–570. 10.1007/BF01797193 DOI

Bourgeois F., Lassalle J.-C. (1971). An extension of the munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM 14, 802–804. 10.1145/362919.362945 DOI

Bridwell D. A., Rachakonda S., Silva R. F., Pearlson G. D., Calhoun V. D. (2018). Spatiospectral decomposition of multi-subject EEG: evaluating blind source separation algorithms on real and realistic simulated data. Brain Topogr. 31, 47–61. 10.1007/s10548-016-0479-1 PubMed DOI PMC

Bridwell D. A., Wu L., Eichele T., Calhoun V. D. (2013). The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage 69, 101–111. 10.1016/j.neuroimage.2012.12.024 PubMed DOI PMC

Brookes M. J., Woolrich M., Luckhoo H., Price D., Hale J. R., Stephenson M. C., et al. . (2011). Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc. Nat. Acad. Sci. 108, 16783–16788. 10.1073/pnas.1112685108 PubMed DOI PMC

Cakan C., Jajcay N., Obermayer K. (2021). neurolib: a simulation framework for whole-brain neural mass modeling. Cogn. Comput. 15, 1132–1152. 10.1007/s12559-021-09931-9 DOI

Calhoun V. D., Stevens M. C., Pearlson G. D., Kiehl K. A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage 22, 252–257. 10.1016/j.neuroimage.2003.12.029 PubMed DOI

de Munck J. C., Gonçalves S. I., Huijboom L., Kuijer J. P., Pouwels P. J., Heethaar R. M., et al. . (2007). The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35, 1142–1151. 10.1016/j.neuroimage.2007.01.022 PubMed DOI

de Munck J. C., Gonçalves S. I., Mammoliti R., Heethaar R. M., Da Silva F. L. (2009). Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. Neuroimage 47, 69–76. 10.1016/j.neuroimage.2009.04.029 PubMed DOI

Delorme A., Makeig S. (2004). EEGlab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009 PubMed DOI

Drew P. J. (2019). Vascular and neural basis of the bold signal. Curr. Opin. Neurobiol. 58, 61–69. 10.1016/j.conb.2019.06.004 PubMed DOI PMC

Feige B., Scheffler K., Esposito F., Di Salle F., Hennig J., Seifritz E. (2005). Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J. Neurophysiol. 93, 2864–2872. 10.1152/jn.00721.2004 PubMed DOI

Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Nat. Acad. Sci. 102, 9673–9678. 10.1073/pnas.0504136102 PubMed DOI PMC

Friston K. J., Fletcher P., Josephs O., Holmes A., Rugg M., Turner R. (1998). Event-related fMRI: characterizing differential responses. Neuroimage 7, 30–40. 10.1006/nimg.1997.0306 PubMed DOI

Glover G. H., Li T.-Q., Ress D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor. Magn. Reson. Med. 44, 162–167. 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E PubMed DOI

Goldman R. I., Stern J. M., Engel J., Jr, Cohen M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487. 10.1097/00001756-200212200-00022 PubMed DOI PMC

Gonçalves S. I., De Munck J. C., Pouwels P. J., Schoonhoven R., Kuijer J. P., Maurits N. M., et al. . (2006). Correlating the alpha rhythm to bold using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30, 203–213. 10.1016/j.neuroimage.2005.09.062 PubMed DOI

Hallez H., Vanrumste B., Grech R., Muscat J., De Clercq W., Vergult A., et al. . (2007). Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil. 4, 1–29. 10.1186/1743-0003-4-46 PubMed DOI PMC

Harshman R. A., Lundy M. E. (1994). Parafac: parallel factor analysis. Comput. Stat. Data Anal. 18, 39–72. 10.1016/0167-9473(94)90132-5 DOI

Hiltunen T., Kantola J., Elseoud A. A., Lepola P., Suominen K., Starck T., et al. . (2014). Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J. Neurosci. 34, 356–362. 10.1523/JNEUROSCI.0276-13.2014 PubMed DOI PMC

Himberg J., Hyvärinen A., Esposito F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22, 1214–1222. 10.1016/j.neuroimage.2004.03.027 PubMed DOI

Hyvärinen A., Oja E. (2000). Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430. 10.1016/S0893-6080(00)00026-5 PubMed DOI

Jorge J., Van der Zwaag W., Figueiredo P. (2014). EEG-fMRI integration for the study of human brain function. Neuroimage 102, 24–34. 10.1016/j.neuroimage.2013.05.114 PubMed DOI

Labounek R., Bridwell D. A., Mareček R., Lamoš M., Mikl M., Bednařík P., et al. . (2019). EEG spatiospectral patterns and their link to fMRI bold signal via variable hemodynamic response functions. J. Neurosci. Methods 318, 34–46. 10.1016/j.jneumeth.2019.02.012 PubMed DOI

Labounek R., Bridwell D. A., Mareček R., Lamoš M., Mikl M., Slavíček T., et al. . (2018). Stable scalp EEG spatiospectral patterns across paradigms estimated by group ica. Brain Topogr. 31, 76–89. 10.1007/s10548-017-0585-8 PubMed DOI

Labounek R., Wu Z., Bridwell D. A., Brázdil M., Jan J., Nestrašil I. (2021). Blind visualization of task-related networks from visual oddball simultaneous EEG-fMRI data: spectral or spatiospectral model? Front. Neurol. 12:644874. 10.3389/fneur.2021.644874 PubMed DOI PMC

Laufs H., Holt J. L., Elfont R., Krams M., Paul J. S., Krakow K., et al. . (2006). Where the bold signal goes when alpha EEG leaves. Neuroimage 31, 1408–1418. 10.1016/j.neuroimage.2006.02.002 PubMed DOI

Laufs H., Kleinschmidt A., Beyerle A., Eger E., Salek-Haddadi A., Preibisch C., et al. . (2003a). EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463–1476. 10.1016/S1053-8119(03)00286-6 PubMed DOI

Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., et al. . (2003b). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Nat. Acad. Sci. 100, 11053–11058. 10.1073/pnas.1831638100 PubMed DOI PMC

Lee J.-H., Lee T.-W., Jolesz F. A., Yoo S.-S. (2008). Independent vector analysis (iva): multivariate approach for fMRI group study. Neuroimage 40, 86–109. 10.1016/j.neuroimage.2007.11.019 PubMed DOI

Li C., Yuan H., Shou G., Cha Y.-H., Sunderam S., Besio W., et al. . (2018). Cortical statistical correlation tomography of EEG resting state networks. Front. Neurosci. 12:365. 10.3389/fnins.2018.00365 PubMed DOI PMC

Lima B., Cardoso M. M., Sirotin Y. B., Das A. (2014). Stimulus-related neuroimaging in task-engaged subjects is best predicted by concurrent spiking. J. Neurosci. 34, 13878–13891. 10.1523/JNEUROSCI.1595-14.2014 PubMed DOI PMC

Lindquist M. A., Loh J. M., Atlas L. Y., Wager T. D. (2009). Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage 45, S187–S198. 10.1016/j.neuroimage.2008.10.065 PubMed DOI PMC

Liu Q., Farahibozorg S., Porcaro C., Wenderoth N., Mantini D. (2017). Detecting large-scale networks in the human brain using high-density electroencephalography. Hum. Brain Mapp. 38, 4631–4643. 10.1002/hbm.23688 PubMed DOI PMC

Liu Q., Ganzetti M., Wenderoth N., Mantini D. (2018). Detecting large-scale brain networks using EEG: impact of electrode density, head modeling and source localization. Front. Neuroinform. 12:4. 10.3389/fninf.2018.00004 PubMed DOI PMC

Logothetis N. K., Pauls J., Augath M., Trinath T., Oeltermann A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157. 10.1038/35084005 PubMed DOI

Ma Y., Shaik M. A., Kozberg M. G., Kim S. H., Portes J. P., Timerman D., et al. . (2016). Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc. Nat. Acad. Sci. 113, E8463–E8471. 10.1073/pnas.1525369113 PubMed DOI PMC

Magri C., Schridde U., Murayama Y., Panzeri S., Logothetis N. K. (2012). The amplitude and timing of the bold signal reflects the relationship between local field potential power at different frequencies. J. Neurosci. 32, 1395–1407. 10.1523/JNEUROSCI.3985-11.2012 PubMed DOI PMC

Makeig S., Bell A., Jung T.-P., Sejnowski T. J. (1995). “Independent component analysis of electroencephalographic data,” in Advances in Neural Information Processing Systems, 8.

Mantini D., Franciotti R., Romani G. L., Pizzella V. (2008). Improving meg source localizations: an automated method for complete artifact removal based on independent component analysis. Neuroimage 40, 160–173. 10.1016/j.neuroimage.2007.11.022 PubMed DOI

Mantini D., Perrucci M. G., Del Gratta C., Romani G. L., Corbetta M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proc. Nat. Acad. Sci. 104, 13170–13175. 10.1073/pnas.0700668104 PubMed DOI PMC

Mareček R., Lamoš M., Labounek R., Bartoň M., Slavíček T., Mikl M., et al. . (2017). Multiway array decomposition of EEG spectrum: implications of its stability for the exploration of large-scale brain networks. Neural Comput. 29, 968–989. 10.1162/NECO_a_00933 PubMed DOI

Marecek R., Lamos M., Mikl M., Barton M., Fajkus J., Brazdil M., et al. . (2016). What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study. J. Neural Eng. 13:046026. 10.1088/1741-2560/13/4/046026 PubMed DOI

Marino M., Arcara G., Porcaro C., Mantini D. (2019). Hemodynamic correlates of electrophysiological activity in the default mode network. Front. Neurosci. 13:1060. 10.3389/fnins.2019.01060 PubMed DOI PMC

Marino M., Liu Q., Brem S., Wenderoth N., Mantini D. (2016). Automated detection and labeling of high-density EEG electrodes from structural mr images. J. Neural Eng. 13:056003. 10.1088/1741-2560/13/5/056003 PubMed DOI

Marino M., Liu Q., Koudelka V., Porcaro C., Hlinka J., Wenderoth N., et al. . (2018). Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci. Rep. 8, 1–11. 10.1038/s41598-018-27187-6 PubMed DOI PMC

Maris E., Oostenveld R. (2007). Nonparametric statistical testing of EEG-and MEG-data. J. Neurosci. Methods 164, 177–190. 10.1016/j.jneumeth.2007.03.024 PubMed DOI

Martınez-Montes E., Valdés-Sosa P. A., Miwakeichi F., Goldman R. I., Cohen M. S. (2004). Concurrent EEG/fMRI analysis by multiway partial least squares. Neuroimage 22, 1023–1034. 10.1016/j.neuroimage.2004.03.038 PubMed DOI

Mateo C., Knutsen P. M., Tsai P. S., Shih A. Y., Kleinfeld D. (2017). Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96, 936–948. 10.1016/j.neuron.2017.10.012 PubMed DOI PMC

Meyer M. C., Janssen R. J., Van Oort E. S. B., Beckmann C. F., Barth M. (2013). The quest for EEG power band correlation with ica derived fMRI resting state networks. Front. Hum. Neurosci. 7:315. 10.3389/fnhum.2013.00315 PubMed DOI PMC

Miwakeichi F., Martınez-Montes E., Valdés-Sosa P. A., Nishiyama N., Mizuhara H., Yamaguchi Y. (2004). Decomposing EEG data into space-time-frequency components using parallel factor analysis. Neuroimage 22, 1035–1045. 10.1016/j.neuroimage.2004.03.039 PubMed DOI

Monto S., Palva S., Voipio J., Palva J. M. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J. Neurosci. 28, 8268–8272. 10.1523/JNEUROSCI.1910-08.2008 PubMed DOI PMC

Moosmann M., Ritter P., Krastel I., Brink A., Thees S., Blankenburg F., et al. . (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20, 145–158. 10.1016/S1053-8119(03)00344-6 PubMed DOI

Murta T., Leite M., Carmichael D. W., Figueiredo P., Lemieux L. (2015). Electrophysiological correlates of the bold signal for EEG-informed fMRI. Hum. Brain Mapp. 36, 391–414. 10.1002/hbm.22623 PubMed DOI PMC

Niazy R. K., Beckmann C. F., Iannetti G. D., Brady J. M., Smith S. M. (2005). Removal of fMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28, 720–737. 10.1016/j.neuroimage.2005.06.067 PubMed DOI

Oostenveld R., Fries P., Maris E., Schoffelen J.-M. (2011). Fieldtrip: open source software for advanced analysis of meg, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. 10.1155/2011/156869 PubMed DOI PMC

Pascual-Marqui R. D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., et al. . (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A 369, 3768–3784. 10.1098/rsta.2011.0081 PubMed DOI

Penny W. D., Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. New York: Elsevier.

Piorecky M., Koudelka V., Strobl J., Brunovsky M., Krajca V. (2019). Artifacts in simultaneous hdEEG/fMRI imaging: a nonlinear dimensionality reduction approach. Sensors 19:4454. 10.3390/s19204454 PubMed DOI PMC

Prestel M., Steinfath T. P., Tremmel M., Stark R., Ott U. (2018). fMRI bold correlates of EEG independent components: spatial correspondence with the default mode network. Front. Hum. Neurosci. 12:478. 10.3389/fnhum.2018.00478 PubMed DOI PMC

Rontogiannis A. A., Kofidis E., Giampouras P. V. (2021). Block-term tensor decomposition: model selection and computation. IEEE J. Sel. Top. Signal Process. 15, 464–475. 10.1109/JSTSP.2021.3051488 DOI

Sanz Leon P., Knock S. A., Woodman M. M., Domide L., Mersmann J., McIntosh A. R., et al. . (2013). The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7:10. 10.3389/fninf.2013.00010 PubMed DOI PMC

Scheeringa R., Petersson K. M., Kleinschmidt A., Jensen O., Bastiaansen M. C. (2012). EEG alpha power modulation of fMRI resting-state connectivity. Brain Connect. 2, 254–264. 10.1089/brain.2012.0088 PubMed DOI PMC

Schirner M., McIntosh A. R., Jirsa V., Deco G., Ritter P. (2018). Inferring multi-scale neural mechanisms with brain network modelling. Elife 7:e28927. 10.7554/eLife.28927 PubMed DOI PMC

Schölvinck M. L., Maier A., Ye F. Q., Duyn J. H., Leopold D. A. (2010). Neural basis of global resting-state fMRI activity. Proc. Nat. Acad. Sci. 107, 10238–10243. 10.1073/pnas.0913110107 PubMed DOI PMC

Shirer W. R., Ryali S., Rykhlevskaia E., Menon V., Greicius M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral cortex 22, 158–165. 10.1093/cercor/bhr099 PubMed DOI PMC

Sockeel S., Schwartz D., Pélégrini-Issac M., Benali H. (2016). Large-scale functional networks identified from resting-state EEG using spatial ica. PLoS ONE 11:e0146845. 10.1371/journal.pone.0146845 PubMed DOI PMC

Steyrl D., Müller-Putz G. R. (2019). Artifacts in EEG of simultaneous EEG-fMRI: pulse artifact remainders in the gradient artifact template are a source of artifact residuals after average artifact subtraction. J. Neural Eng. 16:016011. 10.1088/1741-2552/aaec42 PubMed DOI

Taberna G. A., Samogin J., Mantini D. (2021). Automated head tissue modelling based on structural magnetic resonance images for electroencephalographic source reconstruction. Neuroinformatics 19, 585–596. 10.1007/s12021-020-09504-5 PubMed DOI PMC

Takata N., Sugiura Y., Yoshida K., Koizumi M., Hiroshi N., Honda K., et al. . (2018). Optogenetic astrocyte activation evokes bold fMRI response with oxygen consumption without neuronal activity modulation. Glia 66, 2013–2023. 10.1002/glia.23454 PubMed DOI

Tran C. H. T., Peringod G., Gordon G. R. (2018). Astrocytes integrate behavioral state and vascular signals during functional hyperemia. Neuron 100, 1133–1148. 10.1016/j.neuron.2018.09.045 PubMed DOI

Tucker L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311. 10.1007/BF02289464 PubMed DOI

Tyvaert L., LeVan P., Grova C., Dubeau F., Gotman J. (2008). Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin. Neurophysiol. 119, 2762–2774. 10.1016/j.clinph.2008.07.284 PubMed DOI PMC

Uusitalo M. A., Ilmoniemi R. J. (1997). Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35, 135–140. 10.1007/BF02534144 PubMed DOI

Vazquez A. L., Fukuda M., Kim S.-G. (2018). Inhibitory neuron activity contributions to hemodynamic responses and metabolic load examined using an inhibitory optogenetic mouse model. Cerebral Cortex 28, 4105–4119. 10.1093/cercor/bhy225 PubMed DOI PMC

Vega M. L. B., Michel C. M., Saxena S., White T., Valdes-Sosa P. A. (2022). Neuroimaging and global health. Neuroimage 260:119458. 10.1016/j.neuroimage.2022.119458 PubMed DOI

Vejmelka M., Pokorná L., Hlinka J., Hartman D., Jajcay N., Paluš M. (2015). Non-random correlation structures and dimensionality reduction in multivariate climate data. Clim. Dyn. 44, 2663–2682. 10.1007/s00382-014-2244-z DOI

Vorderwülbecke B. J., Carboni M., Tourbier S., Brunet D., Seeber M., Spinelli L., et al. . (2020). High-density electric source imaging of interictal epileptic discharges: how many electrodes and which time point? Clin. Neurophysiol. 131, 2795–2803. 10.1016/j.clinph.2020.09.018 PubMed DOI

Vorwerk J., Oostenveld R., Piastra M. C., Magyari L., Wolters C. H. (2018). The fieldtrip-simbio pipeline for EEG forward solutions. Biomed. Eng. Online 17, 1–17. 10.1186/s12938-018-0463-y PubMed DOI PMC

Winder A. T., Echagarruga C., Zhang Q., Drew P. J. (2017). Weak correlations between hemodynamic signals and ongoing neural activity during the resting state. Nat. Neurosci. 20, 1761–1769. 10.1038/s41593-017-0007-y PubMed DOI PMC

Xia M., Wang J., He Y. (2013). Brainnet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8:e68910. 10.1371/journal.pone.0068910 PubMed DOI PMC

Yuan H., Ding L., Zhu M., Zotev V., Phillips R., Bodurka J. (2016). Reconstructing large-scale brain resting-state networks from high-resolution EEG: spatial and temporal comparisons with fMRI. Brain Connect. 6, 122–135. 10.1089/brain.2014.0336 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...