Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33981283
PubMed Central
PMC8107237
DOI
10.3389/fneur.2021.644874
Knihovny.cz E-zdroje
- Klíčová slova
- GLM, general linear model, independent component analysis, simultaneous EEG-fMRI, spectral and spatiospectral models, task-related network visualization, visual oddball paradigm,
- Publikační typ
- časopisecké články MeSH
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ 4 band and low β 1 band) demonstrated significant negative linear relationship (p FWE < 0.05) to the frequent stimulus and three patterns (two low δ 2 and δ 3 bands, and narrow θ 1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ 4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ 4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β 1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ 1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ 1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ 4, β 1, and θ 1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Biomedical Engineering Brno University of Technology Brno Czechia
Department of Biomedical Engineering University of Minnesota Minneapolis MN United States
Zobrazit více v PubMed
Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. (1993) 87:417–20. 10.1016/0013-4694(93)90156-P PubMed DOI
Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Sutton JP, et al. . Simultaneous functional magnetic resonance imaging and electrophysiological recording. Hum Brain Mapp. (1995) 3:13–23. 10.1002/hbm.460030103 PubMed DOI
Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. (2000) 12:230–9. 10.1006/nimg.2000.0599 PubMed DOI
Goldman RI, Stern JM, Engel J, Jr, Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol. (2000) 111:1974–80. 10.1016/S1388-2457(00)00456-9 PubMed DOI
Goldman RI, Stern JM, Engel J, Jr, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport. (2002) 13:2487–92. 10.1097/00001756-200212200-00022 PubMed DOI PMC
Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, et al. . Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. (2003) 20:145–58. 10.1016/S1053-8119(03)00344-6 PubMed DOI
Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, et al. . EEG-correlated fMRI of human alpha activity. Neuroimage. (2003) 19:1463–76. 10.1016/S1053-8119(03)00286-6 PubMed DOI
Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, et al. . Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA. (2003) 100:11053–8. 10.1073/pnas.1831638100 PubMed DOI PMC
Gonçalves SI, de Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM, et al. . Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage. (2006) 30:203–13. 10.1016/j.neuroimage.2005.09.062 PubMed DOI
de Munck JC, Gonçalves SI, Mammoliti R, Heethaar RM, Lopes da Silva FH. Interactions between different EEG frequency bands and their effect on alpha–fMRI correlations. Neuroimage. (2009) 47:69–76. 10.1016/j.neuroimage.2009.04.029 PubMed DOI
Scheeringa R, Bastiaansen MCM, Petersson KM, Oostenveld R, Norris DG, Hagoort P. Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol. (2008) 67:242–51. 10.1016/j.ijpsycho.2007.05.017 PubMed DOI
Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MCM. EEG α power modulation of fMRI resting-state connectivity. Brain Connect. (2012) 2:254–64. 10.1089/brain.2012.0088 PubMed DOI PMC
Rusiniak M, Wróbel A, Cieśla K, Pluta A, Lewandowska M, Wójcik J, et al. . The relationship between alpha burst activity and the default mode network. Acta Neurobiol Exp. (2018) 78:92–113. 10.21307/ane-2018-010 PubMed DOI
Portnova GV, Tetereva A, Balaev V, Atanov M, Skiteva L, Ushakov V, et al. . Correlation of BOLD signal with linear and nonlinear patterns of EEG in resting state EEG-informed fMRI. Front Hum Neurosci. (2017) 11:654. 10.3389/fnhum.2017.00654 PubMed DOI PMC
Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, et al. . Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp. (2007) 28:793–803. 10.1002/hbm.20309 PubMed DOI PMC
Rosa MJ, Kilner J, Blankenburg F, Josephs O, Penny W. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage. (2010) 49:1496–509. 10.1016/j.neuroimage.2009.09.011 PubMed DOI PMC
Sclocco R, Tana MG, Visani E, Gilioli I, Panzica F, Franceschetti S, et al. . EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Front Hum Neurosci. (2014) 8:186. 10.3389/fnhum.2014.00186 PubMed DOI PMC
Labounek R, Lamoš M, Mareček R, Brázdil M, Jan J. Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG. J Neurosci Methods. (2015) 245:125–36. 10.1016/j.jneumeth.2015.02.016 PubMed DOI
Labounek R, Bridwell DA, Mareček R, Lamoš M, Mikl M, Bednarík P, et al. . EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions. J Neurosci Methods. (2019) 318:34–46. 10.1016/j.jneumeth.2019.02.012 PubMed DOI
Marecek R, Lamos M, Mikl M, Barton M, Fajkus J, Rektor I, et al. . What can be found in scalp EEG spectrum beyond common frequency bands. EEG–fMRI study. J Neural Eng. (2016) 13:046026. 10.1088/1741-2560/13/4/046026 PubMed DOI
Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller H-J, et al. . Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage. (2004) 22:83–94. 10.1016/j.neuroimage.2003.10.051 PubMed DOI
Bénar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M, et al. . Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp. (2007) 28:602–13. 10.1002/hbm.20289 PubMed DOI
Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, et al. . Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage. (2001) 14:780–7. 10.1006/nimg.2001.0853 PubMed DOI
Vulliemoz S, Rodionov R, Carmichael DW, Thornton R, Guye M, Lhatoo SD, et al. . Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. Neuroimage. (2010) 49:3219–29. 10.1016/j.neuroimage.2009.11.055 PubMed DOI
Ebrahimzadeh E, Shams M, Fayaz F, Rajabion L, Mirbagheri M, Nadjar Araabi B, et al. . Quantitative determination of concordance in localizing epileptic focus by component-based EEG-fMRI. Comput Methods Programs Biomed. (2019) 177:231–41. 10.1016/j.cmpb.2019.06.003 PubMed DOI
Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA. (2007) 104:13170–5. 10.1073/pnas.0700668104 PubMed DOI PMC
Mantini D, Marzetti L, Corbetta M, Romani GL, Del Gratta C. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks. Brain Topogr. (2010) 23:150–8. 10.1007/s10548-009-0132-3 PubMed DOI PMC
Omata K, Hanakawa T, Morimoto M, Honda M. Spontaneous slow fluctuation of EEG alpha rhythm reflects activity in deep-brain structures: a simultaneous EEG-fMRI study. PLoS ONE. (2013) 8:e66869. 10.1371/journal.pone.0066869 PubMed DOI PMC
Hiltunen T, Kantola J, Abou Elseoud A, Lepola P, Suominen K, Starck T, et al. . Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J Neurosci. (2014) 34:356–62. 10.1523/JNEUROSCI.0276-13.2014 PubMed DOI PMC
Mareček R, Lamoš M, Labounek R, Barton M, Slavíček T, Mikl M, et al. . Multiway array decomposition of EEG spectrum: implications of its stability for the exploration of large-scale brain networks. Neural Comput. (2017) 29:968–89. 10.1162/NECO_a_00933 PubMed DOI
Keinänen T, Rytky S, Korhonen V, Huotari N, Nikkinen J, Tervonen O, et al. . Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network. J Neurosci Res. (2018) 96:1689–98. 10.1002/jnr.24257 PubMed DOI
Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD. Joint independent component analysis for simultaneous EEG–fMRI: principle and simulation. Int J Psychophysiol. (2008) 67:212–21. 10.1016/j.ijpsycho.2007.05.016 PubMed DOI PMC
Yu Q, Wu L, Bridwell DA, Erhardt EB, Du Y, He H, et al. . Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front Hum Neurosci. (2016) 10:476. 10.3389/fnhum.2016.00476 PubMed DOI PMC
Lamoš M, Mareček R, Slavíček T, Mikl M, Rektor I, Jan J. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics. J Neural Eng. (2018) 15:036025. 10.1088/1741-2552/aab66b PubMed DOI
Wei H, Jafarian A, Zeidman P, Litvak V, Razi A, Hu D, et al. . Bayesian fusion and multimodal DCM for EEG and fMRI. Neuroimage. (2020) 211:116595. 10.1016/j.neuroimage.2020.116595 PubMed DOI
de Munck JC, Gonçalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, et al. . The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage. (2007) 35:1142–51. 10.1016/j.neuroimage.2007.01.022 PubMed DOI
Wu L, Eichele T, Calhoun VD. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage. (2010) 52:1252–60. 10.1016/j.neuroimage.2010.05.053 PubMed DOI PMC
Bridwell DA, Wu L, Eichele T, Calhoun VD. The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage. (2013) 69:101–11. 10.1016/j.neuroimage.2012.12.024 PubMed DOI PMC
Prokopiou PC, Xifra-Porxas A, Kassinopoulos M. Modeling the hemodynamic response function using motor task and eyes-open resting-state EEG-fMRI. bioRxiv. (2020). 10.1101/2020.06.29.178483v1 PubMed DOI
Van Eyndhoven S, Dupont P, Tousseyn S, Vervliet N, Van Paesschen W, Van Huffel S, et al. . Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. NeuroImage. (2021) 228:117652. 10.1016/j.neuroimage.2020.117652 PubMed DOI PMC
Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, et al. . Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG-fMRI. Neuroimage. (2009) 45:1220–31. 10.1016/j.neuroimage.2009.01.014 PubMed DOI
LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage. (2010) 49:366–78. 10.1016/j.neuroimage.2009.07.064 PubMed DOI PMC
Labounek R, Janeček D, Mareček R, Lamoš M, Slaviček T, Mikl M, et al. . Generalized EEG-FMRI spectral and spatiospectral heuristic models. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague; (2016). p. 767–70. 10.1109/ISBI.2016.7493379 DOI
Polich J. Theoretical overview of P3a and P3b. In: Detection of Change: Event-Related Potential and fMRI Findings, Polich J, editor. Boston, MA: Springer US; (2003). p. 83–98. 10.1007/978-1-4615-0294-4_5 DOI
Tueting P, Sutton S, Zubin J. Quantitative evoked potential correlates of the probability of events. Psychophysiology. (1970) 7:385–94. 10.1111/j.1469-8986.1970.tb01763.x PubMed DOI
Kok A. Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biol Psychol. (1997) 45:19–56. 10.1016/S0301-0511(96)05221-0 PubMed DOI
Kilner JM, Mattout J, Henson R, Friston KJ. Hemodynamic correlates of EEG: a heuristic. Neuroimage. (2005) 28:280–6. 10.1016/j.neuroimage.2005.06.008 PubMed DOI
Labounek R, Bridwell DA, Mareček R, Lamoš M, Mikl M, Slavíček T, et al. . Stable scalp EEG spatiospectral patterns across paradigms estimated by group ICA. Brain Topogr. (2018) 31:76–89. 10.1007/s10548-017-0585-8 PubMed DOI
Labounek R, Bridwell DA, Mareček R, Lamoš M, Mikl M, Brázdil M, et al. . Stable EEG spatiospectral sources using relative power as group-ICA input. In: World Congress on Medical Physics and Biomedical Engineering 2018. Singapore: Springer Singapore; (2019). p. 125–8. 10.1007/978-981-10-9038-7_22 DOI
Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. (1998) 8:229–39. 10.1006/nimg.1998.0361 PubMed DOI
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. (2001) 14:140–51. 10.1002/hbm.1048 PubMed DOI PMC
Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. (1995) 7:1129–59. 10.1162/neco.1995.7.6.1129 PubMed DOI
Himberg J, Hyvärinen A, Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage. (2004) 22:1214–22. 10.1016/j.neuroimage.2004.03.027 PubMed DOI
Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. (1994) 2:189–210. 10.1002/hbm.460020402 DOI
Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Hum Brain Mapp. (1995) 3:165–89. 10.1002/hbm.460030303 DOI
Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. Neuroimage. (1998) 7:30–40. 10.1006/nimg.1997.0306 PubMed DOI
Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. (2019) 32:926–42. 10.1007/s10548-019-00744-6 PubMed DOI PMC
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. (2010) 214:655–67. 10.1007/s00429-010-0262-0 PubMed DOI PMC
Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. (2015) 16:55–61. 10.1038/nrn3857 PubMed DOI
Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. (2008) 105:12569–74. 10.1073/pnas.0800005105 PubMed DOI PMC
Mori S, Wakana S, van Zijl PCM, Nagae-Poetscher LM. MRI Atlas of Human White Matter. Amsterdam: Elsevier; (2005). Available online at: https://www.elsevier.com/books/mri-atlas-of-human-white-matter/mori/978-0-444-51741-8
Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. . Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. (2007) 36:630–44. 10.1016/j.neuroimage.2007.02.049 PubMed DOI PMC
Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. . Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. (2008) 39:336–47. 10.1016/j.neuroimage.2007.07.053 PubMed DOI PMC
Linden DE, Prvulovic D, Formisano E, Völlinger M, Zanella FE, Goebel R, et al. . The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex. (1999) 9:815–23. 10.1093/cercor/9.8.815 PubMed DOI
Stevens AA, Skudlarski P, Gatenby JC, Gore JC. Event-related fMRI of auditory and visual oddball tasks. Magn Reson Imaging. (2000) 18:495–502. 10.1016/S0730-725X(00)00128-4 PubMed DOI
Kiehl KA, Laurens KR, Duty TL, Forster BB, Liddle PF. An event-related fMRI study of visual and auditory oddball tasks. J. Psychophysiol. (2001) 15:221–40. 10.1027//0269-8803.15.4.221 PubMed DOI
Brázdil M, Dobsík M, Mikl M, Hlustík P, Daniel P, Pazourková M, et al. . Combined event-related fMRI and intracerebral ERP study of an auditory oddball task. Neuroimage. (2005) 26:285–93. 10.1016/j.neuroimage.2005.01.051 PubMed DOI
Brázdil M, Mikl M, Marecek R, Krupa P, Rektor I. Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage. (2007) 35:827–35. 10.1016/j.neuroimage.2006.12.020 PubMed DOI
Chen C-C, Syue K-S, Li K-C, Yeh S-C. Neuronal correlates of a virtual-reality-based passive sensory P300 network. PLoS ONE. (2014) 9:e112228. 10.1371/journal.pone.0112228 PubMed DOI PMC
Li F, Chen B, Li H, Zhang T, Wang F, Jiang Y, et al. . The time-varying networks in P300: a task-evoked EEG study. IEEE Trans Neural Syst Rehabil Eng. (2016) 24:725–33. 10.1109/TNSRE.2016.2523678 PubMed DOI
Li F, Yi C, Jiang Y, Liao Y, Si Y, Yao D, et al. . The construction of large-scale cortical networks for P300 from scalp EEG. IEEE Access. (2018) 6:68498–506. 10.1109/ACCESS.2018.2879487 PubMed DOI
Zhang Y, Tang AC, Zhou X. Synchronized network activity as the origin of a P300 component in a facial attractiveness judgment task. Psychophysiology. (2014) 51:285–9. 10.1111/psyp.12153 PubMed DOI
Li F, Yi C, Liao Y, Jiang Y, Si Y, Song L, et al. . Reconfiguration of brain network between resting-state and P300 task. IEEE Trans Cogn Dev Syst. (2020). 10.1109/TCDS.2020.2965135. [Epub ahead of print]. DOI
Liebenthal E, Ellingson ML, Spanaki MV, Prieto TE, Ropella KM, Binder JR. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Neuroimage. (2003) 19:1395–404. 10.1016/S1053-8119(03)00228-3 PubMed DOI
O'Connell RG, Balsters JH, Kilcullen SM, Campbell W, Bokde AW, Lai R, et al. . A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiol Aging. (2012) 33:2448–61. 10.1016/j.neurobiolaging.2011.12.021 PubMed DOI
Campanella S, Bourguignon M, Peigneux P, Metens T, Nouali M, Goldman S, et al. . BOLD response to deviant face detection informed by P300 event-related potential parameters: a simultaneous ERP–fMRI study. Neuroimage. (2013) 71:92–103. 10.1016/j.neuroimage.2012.12.077 PubMed DOI
Altieri R, Melcarne A, Junemann C, Zeppa P, Zenga F, Garbossa D, et al. . Inferior Fronto-Occipital fascicle anatomy in brain tumor surgeries: from anatomy lab to surgical theater. J Clin Neurosci. (2019) 68:290–4. 10.1016/j.jocn.2019.07.039 PubMed DOI
Dalrymple-Alford JC, Harland B, Loukavenko EA, Perry B, Mercer S, Collings DA, et al. . Anterior thalamic nuclei lesions and recovery of function: relevance to cognitive thalamus. Neurosci Biobehav Rev. (2015) 54:145–60. 10.1016/j.neubiorev.2014.12.007 PubMed DOI
Schepers IM, Beck A-K, Bräuer S, Schwabe K, Abdallat M, Sandmann P, et al. . Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neuroimage. (2017) 152:390–9. 10.1016/j.neuroimage.2017.03.019 PubMed DOI
Barton M, Mareček R, Krajčovičová L, Slavíček T, Kašpárek T, Zemánková P, et al. . Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—quantifying noise removal and neural signal preservation. Hum Brain Mapp. (2019) 40:1114–38. 10.1002/hbm.24433 PubMed DOI PMC
Mazerolle EL, Beyea SD, Gawryluk JR, Brewer KD, Bowen CV, D'Arcy RCN. Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography. Neuroimage. (2010) 50:616–21. 10.1016/j.neuroimage.2009.12.102 PubMed DOI
Gawryluk JR, Mazerolle EL, D'Arcy RCN. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci. (2014) 8:239. 10.3389/fnins.2014.00239 PubMed DOI PMC
Ding Z, Huang Y, Bailey SK, Gao Y, Cutting LE, Rogers BP, et al. . Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc Natl Acad Sci USA. (2018) 115:595–600. 10.1073/pnas.1711567115 PubMed DOI PMC
Grajauskas LA, Frizzell T, Song X, D'Arcy RCN. White matter fMRI activation cannot be treated as a nuisance regressor: overcoming a historical blind spot. Front. Neurosci. (2019) 13:1024. 10.3389/fnins.2019.01024 PubMed DOI PMC
Li M, Newton AT, Anderson AW, Ding Z, Gore JC. Characterization of the hemodynamic response function in white matter tracts for event-related fMRI. Nat Commun. (2019) 10:1140. 10.1038/s41467-019-09076-2 PubMed DOI PMC
Rektor I, Brázdil M, Nestrasil I, Bares M, Daniel P. Modifications of cognitive and motor tasks affect the occurrence of event-related potentials in the human cortex: cognitive and motor task modifications of event-related potentials. Eur J Neurosci. (2007) 26:1371–80. 10.1111/j.1460-9568.2007.05713.x PubMed DOI
Başar E, Düzgün A. The CLAIR model: extension of Brodmann areas based on brain oscillations and connectivity. Int J Psychophysiol. (2016) 103:185–98. 10.1016/j.ijpsycho.2015.02.018 PubMed DOI
Başar-Eroglu C, Başar E, Demiralp T, Schürmann M. P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol. (1992) 13:161–79. 10.1016/0167-8760(92)90055-G PubMed DOI
Bernat EM, Malone SM, Williams WJ, Patrick CJ, Iacono WG. Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. Int J Psychophysiol. (2007) 64:62–74. 10.1016/j.ijpsycho.2006.07.015 PubMed DOI PMC
Harper J, Malone SM, Bernat EM. Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin Neurophysiol. (2014) 125:124–32. 10.1016/j.clinph.2013.06.025 PubMed DOI PMC
Peng W, Hu L, Zhang Z, Hu Y. Causality in the association between P300 and alpha event-related desynchronization. PLoS ONE. (2012) 7:e34163. 10.1371/journal.pone.0034163 PubMed DOI PMC
Bender S, Banaschewski T, Roessner V, Klein C, Rietschel M, Feige B, et al. . Variability of single trial brain activation predicts fluctuations in reaction time. Biol Psychol. (2015) 106:50–60. 10.1016/j.biopsycho.2015.01.013 PubMed DOI
Başar-Eroglu C, Demiralp T. Event-related theta oscillations: an integrative and comparative approach in the human and animal brain. Int J Psychophysiol. (2001) 39:167–95. 10.1016/S0167-8760(00)00140-9 PubMed DOI
Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. (1993) 86:283–93. 10.1016/0013-4694(93)90110-H PubMed DOI
Güntekin B, Emek-Savaş DD, Kurt P, Yener GG, Başar E. Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment. Neuroimage Clin. (2013) 3:39–46. 10.1016/j.nicl.2013.07.003 PubMed DOI PMC
Lin Y-Q, Cui S-S, Du J-J, Li G, He Y-X, Zhang P-C, et al. . N1 and P1 components associate with visuospatial-executive and language functions in normosmic Parkinson's disease: an event-related potential study. Front Aging Neurosci. (2019) 11:18. 10.3389/fnagi.2019.00018 PubMed DOI PMC
Luck SJ, Heinze HJ, Mangun GR, Hillyard SA. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol. (1990) 75:528–42. 10.1016/0013-4694(90)90139-B PubMed DOI
Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M, Mijovic B, et al. . The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. Neuroimage. (2011) 54:824–35. 10.1016/j.neuroimage.2010.09.041 PubMed DOI
Klimesch W, Schack B, Schabus M, Doppelmayr M, Gruber W, Sauseng P. Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance. Cogn Brain Res. (2004) 19:302–16. 10.1016/j.cogbrainres.2003.11.016 PubMed DOI
Bledowski C, Prvulovic D, Hoechstetter K, Scherg M, Wibral M, Goebel R, et al. . Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci. (2004) 24:9353–60. 10.1523/JNEUROSCI.1897-04.2004 PubMed DOI PMC
Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. (2012) 16:584–92. 10.1016/j.tics.2012.10.008 PubMed DOI PMC
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. (2005) 102:9673–8. 10.1073/pnas.0504136102 PubMed DOI PMC
Li Y, Wang L-Q, Hu Y. Localizing P300 generators in high-density event- related potential with fMRI. Med Sci Monit. (2009) 15:MT47–53. Available online at: https://www.medscimonit.com/download/index/idArt/869569 PubMed
Wang RWY, Chang W-L, Chuang S-W, Liu I-N. Posterior cingulate cortex can be a regulatory modulator of the default mode network in task-negative state. Sci Rep. (2019) 9:7565. 10.1038/s41598-019-43885-1 PubMed DOI PMC
Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. (2014) 137:12–32. 10.1093/brain/awt162 PubMed DOI PMC
Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct. (2011) 7:30. 10.1186/1744-9081-7-30 PubMed DOI PMC
Ebrahimzadeh E, Soltanian-Zadeh H, Araabi BN, Fesharaki SSH, Habibabadi JM. Component-related BOLD response to localize epileptic focus using simultaneous EEG-fMRI recordings at 3T. J Neurosci Methods. (2019) 322:34–49. 10.1016/j.jneumeth.2019.04.010 PubMed DOI
Ebrahimzadeh E, Shams M, Rahimpour Jounghani A, Fayaz F, Mirbagheri M, Hakimi N, et al. . Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method. Cogn Neurodyn. (2020) 15:207–22. 10.1007/s11571-020-09614-5 PubMed DOI PMC
Belouchrani A, Abed-Meraim K, Cardoso J, Moulines E. A blind source separation technique using second-order statistics. IEEE Trans Signal Process. (1997) 45:434–44. 10.1109/78.554307 DOI
Tang AC, Sutherland MT, McKinney CJ. Validation of SOBI components from high-density EEG. Neuroimage. (2005) 25:539–53. 10.1016/j.neuroimage.2004.11.027 PubMed DOI
Tang A. Applications of second order blind identification to high-density EEG-based brain imaging: a review. In: Advances in Neural Networks - ISNN 2010 (Heidelberg: Springer Berlin; ) (2010). p. 368–77. 10.1007/978-3-642-13318-3_46 DOI
Congedo M, Gouy-Pailler C, Jutten C. On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clin Neurophysiol. (2008) 119:2677–86. 10.1016/j.clinph.2008.09.007 PubMed DOI
Congedo M, John RE, De Ridder D, Prichep L. Group independent component analysis of resting state EEG in large normative samples. Int J Psychophysiol. (2010) 78:89–99. 10.1016/j.ijpsycho.2010.06.003 PubMed DOI
Hyvärinen A, Ramkumar P, Parkkonen L, Hari R. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage. (2010) 49:257–71. 10.1016/j.neuroimage.2009.08.028 PubMed DOI
Bridwell DA, Rachakonda S, Silva RF, Pearlson GD, Calhoun VD. Spatiospectral decomposition of multi-subject EEG: evaluating blind source separation algorithms on real and realistic simulated data. Brain Topogr. (2018) 31:47–61. 10.1007/s10548-016-0479-1 PubMed DOI PMC
Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, et al. . A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. (2011) 5:2. 10.3389/fnsys.2011.00002 PubMed DOI PMC
Spadone S, Della Penna S, Sestieri C, Betti V, Tosoni A, Perrucci MG, et al. . Dynamic reorganization of human resting-state networks during visuospatial attention. Proc Natl Acad Sci USA. (2015) 112:8112–7. 10.1073/pnas.1415439112 PubMed DOI PMC
Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage. (2009) 45:S163–72. 10.1016/j.neuroimage.2008.10.057 PubMed DOI PMC
Edwards BG, Calhoun VD, Kiehl KA. Joint ICA of ERP and fMRI during error-monitoring. Neuroimage. (2012) 59:1896–903. 10.1016/j.neuroimage.2011.08.088 PubMed DOI PMC
Mangalathu-Arumana J, Beardsley SA, Liebenthal E. Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm. Neuroimage. (2012) 60:2247–57. 10.1016/j.neuroimage.2012.02.030 PubMed DOI PMC
Martínez-Montes E, Valdés-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS. Concurrent EEG/fMRI analysis by multiway Partial Least Squares. Neuroimage. (2004) 22:1023–34. 10.1016/j.neuroimage.2004.03.038 PubMed DOI
Van Eyndhoven S, Vervliet N, De Lathauwer L, Van Huffel S. Identifying stable components of matrix/tensor factorizations via lowrank approximation of inter-factorization similarity. In: 2019 27th European Signal Processing Conference (EUSIPCO) (A Coruña: IEEE; ) (2019). p. 1–5. 10.23919/EUSIPCO.2019.8902954 DOI
Jonmohamadi Y, Muthukumaraswamy S, Chen J, Roberts J, Crawford R, Pandey A. Extraction of common task features in EEG-fMRI data using coupled tensor-tensor decomposition. Brain Topogr. (2020) 33:636–50. 10.1007/s10548-020-00787-0 PubMed DOI
Jonmohamadi Y, Poudel G, Innes C, Jones R. Source-space ICA for EEG source separation, localization, and time-course reconstruction. Neuroimage. (2014) 101:720–37. 10.1016/j.neuroimage.2014.07.052 PubMed DOI
Jonmohamadi Y, Forsyth A, McMillan R, Muthukumaraswamy SD. Constrained temporal parallel decomposition for EEG-fMRI fusion. J Neural Eng. (2019) 16:16017. 10.1088/1741-2552/aaefda PubMed DOI
Warbrick T, Reske M, Shah NJ. Do EEG paradigms work in fMRI? Varying task demands in the visual oddball paradigm: implications for task design and results interpretation. Neuroimage. (2013) 77:177–85. 10.1016/j.neuroimage.2013.03.026 PubMed DOI
Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. (1994) 2:56–78. 10.1002/hbm.460020107 DOI
Friston KJ. Functional and effective connectivity: a review. Brain Connect. (2011) 1:13–36. 10.1089/brain.2011.0008 PubMed DOI
Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. (2003) 19:1273–302. 10.1016/S1053-8119(03)00202-7 PubMed DOI
Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, et al. . Dynamic causal modelling revisited. Neuroimage. (2019) 199:730–44. 10.1016/j.neuroimage.2017.02.045 PubMed DOI PMC
Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically informed dynamic causal modeling of fMRI data. Neuroimage. (2015) 122:355–72. 10.1016/j.neuroimage.2015.07.078 PubMed DOI
Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ. Tractography-based priors for dynamic causal models. NeuroImage. (2009) 47:1628–38. 10.1016/j.neuroimage.2009.05.096 PubMed DOI PMC
Anemüller J, Sejnowski TJ, Makeig S. Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw. (2003) 16:1311–23. 10.1016/j.neunet.2003.08.003 PubMed DOI PMC
Bernat EM, Williams WJ, Gehring WJ. Decomposing ERP time–frequency energy using PCA. Clin Neurophysiol. (2005) 116:1314–34. 10.1016/j.clinph.2005.01.019 PubMed DOI
Kauppi J-P, Parkkonen L, Hari R, Hyvärinen A. Decoding magnetoencephalographic rhythmic activity using spectrospatial information. Neuroimage. (2013) 83:921–36. 10.1016/j.neuroimage.2013.07.026 PubMed DOI
Shou G, Ding L, Dasari D. Probing neural activations from continuous EEG in a real-world task: time-frequency independent component analysis. J Neurosci Methods. (2012) 209:22–34. 10.1016/j.jneumeth.2012.05.022 PubMed DOI
Ramkumar P, Parkkonen L, Hari R, Hyvärinen A. Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum Brain Mapp. (2012) 33:1648–62. 10.1002/hbm.21303 PubMed DOI PMC
Zhong R, Li M, Chen Q, Li J, Li G, Lin W. The P300 event-related potential component and cognitive impairment in epilepsy: a systematic review and meta-analysis. Front Neurol. (2019) 10:943. 10.3389/fneur.2019.00943 PubMed DOI PMC