Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA

. 2018 Jan ; 31 (1) : 76-89. [epub] 20170905

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28875402

Grantová podpora
CZ.1.05/1.1.00/02.0068 Ministerstvo Školství, Mládeže a Tělovýchovy - International
FEKT-S-14-2210 Vysoké Učení Technické v Brně - International
FEKT-S-11-2-921 Vysoké Učení Technické v Brně - International
AZV 16-302100A Univerzita Palackého v Olomouci - International

Odkazy

PubMed 28875402
DOI 10.1007/s10548-017-0585-8
PII: 10.1007/s10548-017-0585-8
Knihovny.cz E-zdroje

Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace