Toward European harmonization of national myasthenia gravis registries: modified Delphi procedure-based expert consensus on collectable data

. 2025 Mar 11 ; 20 (1) : 115. [epub] 20250311

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40069719
Odkazy

PubMed 40069719
PubMed Central PMC11895382
DOI 10.1186/s13023-024-03520-3
PII: 10.1186/s13023-024-03520-3
Knihovny.cz E-zdroje

BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disorder. Several new treatment concepts have emerged in recent years, but access to these treatments varies due to differing national reimbursement regulations, leading to disparities across Europe. This highlights the need for high-quality data collection by stakeholders to establish MG registries. A European MG registry could help bridge the treatment access gap across different countries, offering critical data to support regulatory decisions, foster international collaborations, and enhance clinical and epidemiological research. Several national MG registries already exist or are in development. To avoid duplication and ensure harmonization in data collection, a modified Delphi procedure was implemented to identify essential data elements for inclusion in national registries. RESULTS: Following a literature review, consultations with patient associations and pharmaceutical companies, and input from multiple European MG experts, 100 data elements were identified. Of these, 62 reached consensus for inclusion and classification, while only 1 item was agreed for exclusion. 30 items failed to reach the ≥ 80% agreement threshold and were excluded. Among the 62 accepted items, 21 were classified as mandatory data elements, 32 optional, and 9 items pertained to the informed consent form. CONCLUSIONS: Through a modified Delphi procedure, consensus was successfully achieved. This consensus-based approach represents a crucial step toward harmonizing MG registries across Europe. The resulting dataset will facilitate the sharing of knowledge and enhance European collaborations. Furthermore, the harmonized data may assist in regulatory or reimbursement decisions regarding novel therapies, as well as address treatment access disparities between European countries.

Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin Department of Neurology With Experimental Neurologie Neuroscience Clinical Research Center Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany

Department of Brain and Behavioral Sciences University of Pavia IRCCS Mondino Foundation Pavia Italy

Department of Clinical Medicine University of Bergen Bergen Norway

Department of Human Neurosciences Sapienza University of Rome Rome Italy

Department of Neurology Faculty of Medicine University Hospital Brno Masaryk University Brno Czechia

Department of Neurology Leiden University Medical Center Leiden the Netherlands

Department of Pediatric Neurology Centre for Neuromuscular Disorders C TNBS University Duisburg Essen Essen Germany

Department of Pediatric Neurosciences Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy

Departments of Clinical Neuroscience Karolinska Institutet and Neurology Karolinska University Hospital Stockholm Sweden

ESIEE PARIS School Gustave Eiffel University Paris France

Immunotherapy and Apheresis Departmental Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy

Institute for Research On Cancer and Aging of Nice CNRS INSERM Côte d'Azur University SNPM Hôpital Pasteur 2 30 voie Romaine 06001 Nice CEDEX France

Neuroimmunology and Neuromuscular Diseases Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy

Neurology Department Centro Hospitalar Universitário de Santo António; Unit for Multidisciplinary Research in Biomedicine Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto Porto Portugal

Neuromuscular Diseases Unit Hospital de La Santa Creu 1 Sant Pau Barcelona Spain

Nuffield Department of Clinical Neurosciences University of Oxford John Radcliffe Hospital Level 3 West Wing Headley Way Oxford OX3 9DU UK

Peripheral Nervous System and Muscle Department Reference Center for Neuromuscular Disorders Pasteur 2 Hospital Centre Hospitalier Universitaire de Nice Nice University Hospital SNPM Hôpital Pasteur 2 30 voie Romaine 06001 Nice CEDEX France

Reference Center for Neuromuscular Disorders and ALS Timone University Hospital Aix Marseille University Marseille France

Reference Center for Neuromuscular Disorders Lenval Pediatric Hospitals of Nice University Hospital Nice France

Zobrazit více v PubMed

Gilhus NE. Myasthenia and the neuromuscular junction. Curr Opin Neurol. 2012;25:523–9. 10.1097/WCO.0b013e3283572588. PubMed

Verschuuren JJGM, Huijbers MG, Plomp JJ, et al. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev. 2013;12:918–23. 10.1016/j.autrev.2013.03.001. PubMed

Vincent A, Huda S, Cao M, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci. 2018;1413:143–53. 10.1111/nyas.13592. PubMed

Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44:36–40. 10.1002/mus.22006. PubMed

Lavrnic D, Losen M, Vujic A, et al. The features of myasthenia gravis with autoantibodies to MuSK. J Neurol Neurosurg Psychiatry. 2005;76:1099–102. 10.1136/jnnp.2004.052415. PubMed PMC

Evoli A, Tonali PA, Padua L, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain J Neurol. 2003;126:2304–11. 10.1093/brain/awg223. PubMed

Leite MI, Ströbel P, Jones M, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57:444–8. 10.1002/ana.20386. PubMed

Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69:418–22. 10.1002/ana.22312. PubMed

Zisimopoulou P, Evangelakou P, Tzartos J, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45. 10.1016/j.jaut.2013.12.004. PubMed

Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14:1023–36. 10.1016/S1474-4422(15)00145-3. PubMed

Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73:150–1. 10.1212/WNL.0b013e3181ad53c2. PubMed

Berrih-Aknin S, Ruhlmann N, Bismuth J, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009;66:521–31. 10.1002/ana.21628. PubMed

Romi F, Aarli JA, Gilhus NE. Myasthenia gravis patients with ryanodine receptor antibodies have distinctive clinical features. Eur J Neurol. 2007;14:617–20. 10.1111/j.1468-1331.2007.01785.x. PubMed

Romi F, Skeie GO, Aarli JA, Gilhus NE. Muscle autoantibodies in subgroups of myasthenia gravis patients. J Neurol. 2000;247:369–75. 10.1007/s004150050604. PubMed

Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100. 10.1016/j.jaut.2013.12.011. PubMed

Jayawant S, Parr J, Vincent A. Autoimmune myasthenia gravis. Handb Clin Neurol. 2013;113:1465–8. 10.1016/B978-0-444-59565-2.00015-0. PubMed

Kerty E, Elsais A, Argov Z, et al. EFNS/ENS guidelines for the treatment of ocular myasthenia. Eur J Neurol. 2014;21:687–93. 10.1111/ene.12359. PubMed

Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8:475–90. 10.1016/S1474-4422(09)70063-8. PubMed PMC

Vissing J, Atula S, Savolainen M, et al. Epidemiology of myasthenia gravis in Denmark, Finland and Sweden: a population-based observational study. J Neurol Neurosurg Psychiatry. 2024;95:919–26. 10.1136/jnnp-2023-333097. PubMed PMC

Aragonès JM, Bolíbar I, Bonfill X, et al. Myasthenia gravis: a higher than expected incidence in the elderly. Neurology. 2003;60:1024–6. 10.1212/01.wnl.0000050461.05432.c5. PubMed

Onodera H. The role of the thymus in the pathogenesis of myasthenia gravis. Tohoku J Exp Med. 2005;207:87–98. 10.1620/tjem.207.87. PubMed

Chanson J-B, Bouhour F, Aubé-Nathier A-C, et al. Myasthenia gravis treatment in the elderly presents with a significant iatrogenic risk: a multicentric retrospective study. J Neurol. 2023;270:5819–26. 10.1007/s00415-023-11925-6. PubMed

Gilhus NE, Tzartos S, Evoli A, et al. Myasthenia gravis. Nat Rev Dis Primer. 2019;5:30. 10.1038/s41572-019-0079-y. PubMed

Gasperi C, Melms A, Schoser B, et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014;82:1976–83. 10.1212/WNL.0000000000000478. PubMed

Zhang B, Shen C, Bealmear B, et al. Autoantibodies to agrin in myasthenia gravis patients. PLoS ONE. 2014;9:e91816. 10.1371/journal.pone.0091816. PubMed PMC

Suzuki S, Utsugisawa K, Nagane Y, Suzuki N. Three types of striational antibodies in myasthenia gravis. Autoimmune Dis. 2011;2011:740583. 10.4061/2011/740583. PubMed PMC

Gallardo E, Martínez-Hernández E, Titulaer MJ, et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev. 2014;13:1003–7. 10.1016/j.autrev.2014.08.039. PubMed

Cortés-Vicente E, Gallardo E, Martínez MÁ, et al. Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol. 2016;73:1099–104. 10.1001/jamaneurol.2016.2032. PubMed

Cordts I, Bodart N, Hartmann K, et al. Screening for lipoprotein receptor-related protein 4-, agrin-, and titin-antibodies and exploring the autoimmune spectrum in myasthenia gravis. J Neurol. 2017;264:1193–203. 10.1007/s00415-017-8514-z. PubMed

Rivner MH, Quarles BM, Pan J-X, et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: a multicenter study. Muscle Nerve. 2020;62:333–43. 10.1002/mus.26985. PubMed PMC

Cossins J, Belaya K, Zoltowska K, et al. The search for new antigenic targets in myasthenia gravis. Ann N Y Acad Sci. 2012;1275:123–8. 10.1111/j.1749-6632.2012.06833.x. PubMed

Verschuuren JJ, Palace J, Murai H, et al. Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21:189–202. 10.1016/S1474-4422(21)00463-4. PubMed

Narayanaswami P, Sanders DB, Wolfe G, et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology. 2021;96:114–22. 10.1212/WNL.0000000000011124. PubMed PMC

Petersson M, et al. Patient-reported symptom severity in a nationwide myasthenia gravis cohort: cross-sectional analysis of the Swedish GEMG study. Neurology. 2021;97:1141. 10.1212/WNL.0000000000013021. PubMed PMC

Powell C. The Delphi technique: myths and realities. J Adv Nurs. 2003;41:376–82. 10.1046/j.1365-2648.2003.02537.x. PubMed

Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000;32:1008–15. PubMed

Atalaia A, Wandrei D, Lalout N, et al. EURO-NMD registry: federated FAIR infrastructure, innovative technologies and concepts of a patient-centred registry for rare neuromuscular disorders. Orphanet J Rare Dis. 2024;19:66. 10.1186/s13023-024-03059-3. PubMed PMC

Thomsen JLS, Andersen H. Outcome measures in clinical trials of patients with myasthenia gravis. Front Neurol. 2020;11:596382. 10.3389/fneur.2020.596382. PubMed PMC

Vanoli F, Mantegazza R. Current drug treatment of myasthenia gravis. Curr Opin Neurol. 2023;36:410–5. 10.1097/WCO.0000000000001196. PubMed

Saccà F, Salort-Campana E, Jacob S, et al. Refocusing generalized myasthenia gravis: patient burden, disease profiles, and the role of evolving therapy. Eur J Neurol. 2024;31:e16180. 10.1111/ene.16180. PubMed PMC

DeHart-McCoyle M, Patel S, Du X. New and emerging treatments for myasthenia gravis. BMJ Med. 2023;2:e000241. 10.1136/bmjmed-2022-000241. PubMed PMC

Saccà F, Pane C, Espinosa PE, et al. Efficacy of innovative therapies in myasthenia gravis: a systematic review, meta-analysis and network meta-analysis. Eur J Neurol. 2023;30:3854–67. 10.1111/ene.15872. PubMed

Smith AG, Wolfe GI, Habib AA, et al. Risk-benefit analysis of novel treatments for patients with generalized myasthenia gravis. Adv Ther. 2024;41:4628–47. 10.1007/s12325-024-03014-5. PubMed PMC

Mestre-Ferrandiz J, Meulien P, Ostwald DA, Acha V. Collaboration for new therapies: maximizing health and innovation. Front Public Health. 2024;12:1383107. 10.3389/fpubh.2024.1383107. PubMed PMC

ERN Registries Generic Informed Consent Forms. In: EJP RD - Eur. Jt. Programme Rare Dis. https://www.ejprarediseases.org/ern-registries-generic-icf/. Accessed 11 December 2024

Landi A, Mimouni Y, Giannuzzi V, et al. The creation of an adaptable informed consent form for research purposes to overcome national and institutional bottlenecks in ethics review: experience from rare disease registries. Front Med. 2024;11:1384026. 10.3389/fmed.2024.1384026. PubMed PMC

Voháňka S, Tichopád A, Horáková M, et al. Burden of myasthenia gravis in the Czech Republic: analysis of the nationwide patient registry. Neurol Ther. 2024. 10.1007/s40120-024-00682-x. PubMed PMC

Muppidi S, Silvestri NJ, Tan R, et al. Utilization of MG-ADL in myasthenia gravis clinical research and care. Muscle Nerve. 2022;65:630–9. 10.1002/mus.27476. PubMed PMC

Asmail A, Kesler A, Drory VE, et al. Effect of ethnic origin and gender on the clinical manifestations of myasthenia gravis among the Jewish population in Israel. J Neuroimmunol. 2017;307:47–52. 10.1016/j.jneuroim.2017.04.003. PubMed

Guideline on registry-based studies - Scientific guideline (2021) European Medicines Agency (EMA). https://www.ema.europa.eu/en/guideline-registry-based-studies-scientific-guideline. Accessed 11 December 2024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...