Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29891929
PubMed Central
PMC5995808
DOI
10.1038/s41598-018-27187-6
PII: 10.1038/s41598-018-27187-6
Knihovny.cz E-zdroje
- MeSH
- artefakty * MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mladý dospělý MeSH
- multimodální zobrazování metody MeSH
- počítačové zpracování obrazu metody MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electroencephalography (EEG) signals recorded during simultaneous functional magnetic resonance imaging (fMRI) are contaminated by strong artifacts. Among these, the ballistocardiographic (BCG) artifact is the most challenging, due to its complex spatio-temporal dynamics associated with ongoing cardiac activity. The presence of BCG residuals in EEG data may hide true, or generate spurious correlations between EEG and fMRI time-courses. Here, we propose an adaptive Optimal Basis Set (aOBS) method for BCG artifact removal. Our method is adaptive, as it can estimate the delay between cardiac activity and BCG occurrence on a beat-to-beat basis. The effective creation of an optimal basis set by principal component analysis (PCA) is therefore ensured by a more accurate alignment of BCG occurrences. Furthermore, aOBS can automatically estimate which components produced by PCA are likely to be BCG artifact-related and therefore need to be removed. The aOBS performance was evaluated on high-density EEG data acquired with simultaneous fMRI in healthy subjects during visual stimulation. As aOBS enables effective reduction of BCG residuals while preserving brain signals, we suggest it may find wide application in simultaneous EEG-fMRI studies.
Department of Experimental Psychology University of Oxford Oxford United Kingdom
Functional Neuroimaging Laboratory IRCCS San Camillo Hospital Foundation Venice Lido Italy
Institute of Computer Science Academy of Sciences of the Czech Republic Prague Czech Republic
LET'S ISTC National Research Council Rome Italy
National Institute of Mental Health Klecany Czech Republic
Neural Control of Movement Laboratory ETH Zurich Zurich Switzerland
Research Center for Motor Control and Neuroplasticity KU Leuven Leuven Belgium
Zobrazit více v PubMed
Rosa MJ, Kilner J, Blankenburg F, Josephs O, Penny W. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage. 2010;49(2):1496–1509. doi: 10.1016/j.neuroimage.2009.09.011. PubMed DOI PMC
Laufs H. Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp. 2008;29(7):762–769. doi: 10.1002/hbm.20600. PubMed DOI PMC
Laufs H. A personalized history of EEG-fMRI integration. Neuroimage. 2012;62(2):1056–1067. doi: 10.1016/j.neuroimage.2012.01.039. PubMed DOI
Jorge J, van der Zwaag W, Figueiredo P. EEG-fMRI integration for the study of human brain function. Neuroimage. 2014;102(1):24–34. doi: 10.1016/j.neuroimage.2013.05.114. PubMed DOI
Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 2012;32(18):6053–6060. doi: 10.1523/JNEUROSCI.0447-12.2012. PubMed DOI PMC
Mantini D, Marzetti L, Corbetta M, Romani GL, Del Gratta C. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks. Brain Topogr. 2010;23(2):150–158. doi: 10.1007/s10548-009-0132-3. PubMed DOI PMC
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 1999;110(11):1842–1857. doi: 10.1016/S1388-2457(99)00141-8. PubMed DOI
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007;8(9):700–711. doi: 10.1038/nrn2201. PubMed DOI
Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–878. doi: 10.1038/nature06976. PubMed DOI
Zich C, et al. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage. 2015;114:438–447. doi: 10.1016/j.neuroimage.2015.04.020. PubMed DOI
Debener S, et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 2005;25(50):11730–11737. doi: 10.1523/JNEUROSCI.3286-05.2005. PubMed DOI PMC
Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA. 2007;104(32):13170–13175. doi: 10.1073/pnas.0700668104. PubMed DOI PMC
Hlinka J, Alexakis C, Diukova A, Liddle PF, Auer DP. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis. NeuroImage. 2010;53(1):239–246. doi: 10.1016/j.neuroimage.2010.06.002. PubMed DOI
Neuner I, Arrubla J, Felder J, Shah NJ. Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. NeuroImage. 2014;102(1):71–79. doi: 10.1016/j.neuroimage.2013.06.048. PubMed DOI
Horovitz SG, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain. Mapp. 2008;29(6):671–682. doi: 10.1002/hbm.20428. PubMed DOI PMC
McAvoy M, Mitra A, Tagliazucchi E, Laufs H, Raichle ME. Mapping visual dominance in human sleep. Neuroimage. 2017;150:250–261. doi: 10.1016/j.neuroimage.2017.02.053. PubMed DOI
Grouiller F, et al. Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field: feasibility and first results. MAGMA. 2016;29(3):605–616. doi: 10.1007/s10334-016-0536-5. PubMed DOI
Pittau F, et al. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front. Neurol. 2014;5:31. PubMed PMC
Abreu R, Leal A, Lopes da Silva F, Figueiredo P. EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. Clin. Neurophysiol. 2018;129:618–635. doi: 10.1016/j.clinph.2017.12.038. PubMed DOI
Benar C, et al. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin. Neurophysiol. 2003;114(3):569–580. doi: 10.1016/S1388-2457(02)00383-8. PubMed DOI
Jorge J, et al. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment. Neuroimage. 2015;105:132–144. doi: 10.1016/j.neuroimage.2014.10.055. PubMed DOI
Abreu R, Leal A, Figueiredo P. EEG-informed fMRI: a review of data analysis methods. Front. Hum. Neurosci. 2018;12:29. doi: 10.3389/fnhum.2018.00029. PubMed DOI PMC
Masterton RA, Abbott DF, Fleming SW, Jackson GD. Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage. 2007;37(1):202–211. doi: 10.1016/j.neuroimage.2007.02.060. PubMed DOI
Nierhaus T, et al. Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI. Neuroimage. 2013;74:70–76. doi: 10.1016/j.neuroimage.2013.02.016. PubMed DOI
Jorge J, Grouiller F, Gruetter R, van der Zwaag W, Figueiredo P. Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion. Neuroimage. 2015;120:143–153. doi: 10.1016/j.neuroimage.2015.07.020. PubMed DOI
Rothlubbers S, et al. Characterisation and reduction of the EEG artefact caused by the helium cooling pump in the MR environment: validation in epilepsy patient data. Brain Topogr. 2015;28(2):208–220. doi: 10.1007/s10548-014-0408-0. PubMed DOI
Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. 2000;12(2):230–239. doi: 10.1006/nimg.2000.0599. PubMed DOI
Yan WX, Mullinger KJ, Brookes MJ, Bowtell R. Understanding gradient artefacts in simultaneous EEG/fMRI. Neuroimage. 2009;46(2):459–471. doi: 10.1016/j.neuroimage.2009.01.029. PubMed DOI
Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. 1998;8(3):229–239. doi: 10.1006/nimg.1998.0361. PubMed DOI
Debener S, Mullinger KJ, Niazy RK, Bowtell RW. Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int. J. Psychophysiol. 2008;67(3):189–199. doi: 10.1016/j.ijpsycho.2007.05.015. PubMed DOI
Müri RM, et al. Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magn. Reson. Med. 1998;39(1):18–22. doi: 10.1002/mrm.1910390105. PubMed DOI
Debener S, et al. Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage. 2007;34(2):587–597. doi: 10.1016/j.neuroimage.2006.09.031. PubMed DOI
Mullinger KJ, Havenhand J, Bowtell R. Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. Neuroimage. 2013;71:75–83. doi: 10.1016/j.neuroimage.2012.12.070. PubMed DOI PMC
Yan WX, Mullinger KJ, Geirsdottir GB, Bowtell R. Physical modeling of pulse artefact sources in simultaneous EEG/fMRI. Hum Brain Mapp. 2010;31(4):604–620. PubMed PMC
Bonmassar G, et al. Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI. Neuroimage. 2002;16(4):1127–1141. doi: 10.1006/nimg.2002.1125. PubMed DOI
Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28(3):720–737. doi: 10.1016/j.neuroimage.2005.06.067. PubMed DOI
Vanderperren K, et al. Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage. 2010;50(3):920–934. doi: 10.1016/j.neuroimage.2010.01.010. PubMed DOI
Marino M, et al. Heart-Brain Interactions in the MR Environment: Characterization of the Ballistocardiogram in EEG Signals Collected During Simultaneous fMRI. Brain Topogr. 2018;31:331–337. doi: 10.1007/s10548-018-0631-1. PubMed DOI
Iannotti GR, Pittau F, Michel CM, Vulliemoz S, Grouiller F. Pulse artifact detection in simultaneous EEG-fMRI recording based on EEG map topography. Brain Topogr. 2015;28(1):21–32. doi: 10.1007/s10548-014-0409-z. PubMed DOI
Oh SS, et al. A pulse artifact removal method considering artifact variations in the simultaneous recording of EEG and fMRI. Neurosci. Res. 2014;81-82:42–50. doi: 10.1016/j.neures.2014.01.008. PubMed DOI
Comon P. Independent component analysis - A new concept? Signal Processing. 1994;36:287–314. doi: 10.1016/0165-1684(94)90029-9. DOI
Mantini D, et al. Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage. 2007;34(2):598–607. doi: 10.1016/j.neuroimage.2006.09.037. PubMed DOI
Abreu R, et al. Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI. Neuroimage. 2016;135:45–63. doi: 10.1016/j.neuroimage.2016.03.034. PubMed DOI
Chaumon M, Crouzet SM, Busch NA. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods. 2015;250:47–63. doi: 10.1016/j.jneumeth.2015.02.025. PubMed DOI
Grouiller F, et al. A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. Neuroimage. 2007;38(1):124–137. doi: 10.1016/j.neuroimage.2007.07.025. PubMed DOI
Liu Z, de Zwart JA, van Gelderen P, Kuo LW, Duyn JH. Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings. Neuroimage. 2012;59:2073–2087. doi: 10.1016/j.neuroimage.2011.10.042. PubMed DOI PMC
Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C. Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage. 2009;44(1):265–274. doi: 10.1016/j.neuroimage.2008.08.019. PubMed DOI PMC
Tyvaert L, Levan P, Grova C, Dubeau F, Gotman J. Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clinical Neurophysiology. 2008;119(12):2762–2774. doi: 10.1016/j.clinph.2008.07.284. PubMed DOI PMC
LeVan P, et al. Ballistocardiographic artifact removal from simultaneous EEG-fMRI using an optical motion-tracking system. Neuroimage. 2013;75:1–11. doi: 10.1016/j.neuroimage.2013.02.039. PubMed DOI
Cattell RB. The Scree Test For The Number Of Factors. Multivariate behavioral research. 1966;1(2):245–276. doi: 10.1207/s15327906mbr0102_10. PubMed DOI
Scheeringa R, et al. Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron. 2011;69(3):572–583. doi: 10.1016/j.neuron.2010.11.044. PubMed DOI
Xia H, Ruan D, Cohen MS. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP) Front. Neurosci. 2014;8:218. PubMed PMC
Xia H, Ruan D, Cohen MS. Separation and reconstruction of BCG and EEG signals during continuous EEG and fMRI recordings. Front. Neurosci. 2014;8:163. PubMed PMC
Maziero D, et al. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Neuroimage. 2016;138:13–27. doi: 10.1016/j.neuroimage.2016.05.003. PubMed DOI
van der Meer JN, et al. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections–A validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage. 2016;125:880–894. doi: 10.1016/j.neuroimage.2015.10.064. PubMed DOI
Chowdhury ME, Mullinger KJ, Glover P, Bowtell R. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Neuroimage. 2014;84:307–319. doi: 10.1016/j.neuroimage.2013.08.039. PubMed DOI
Laufs H, et al. EEG-correlated fMRI of human alpha activity. Neuroimage. 2003;19(4):1463–1476. doi: 10.1016/S1053-8119(03)00286-6. PubMed DOI
Tukey JW. Some thoughts on clinical trials, especially problems of multiplicity. Science. 1977;198(4318):679–684. doi: 10.1126/science.333584. PubMed DOI
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed DOI
Liu Q, et al. Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model. J. Neural Eng. 2015;12(5):056012. doi: 10.1088/1741-2560/12/5/056012. PubMed DOI PMC
Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation. 1997;9(7):1483–1492. doi: 10.1162/neco.1997.9.7.1483. DOI
Simultaneous fMRI-EEG-Based Characterisation of NREM Parasomnia Disease: Methods and Limitations
Artifacts in Simultaneous hdEEG/fMRI Imaging: A Nonlinear Dimensionality Reduction Approach