The cryo-EM structure of the BoNT/Wo-NTNH complex reveals two immunoglobulin-like domains

. 2024 Feb ; 291 (4) : 676-689. [epub] 20230929

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37746829

Grantová podpora
R01NS080833 NIH HHS - United States
R01NS117626 NIH HHS - United States
R01NS080833 NIH HHS - United States
R01NS117626 NIH HHS - United States

The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.

Zobrazit více v PubMed

van Ermengem E (1897) Ueber einen neuen anaëroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infectionskr 26, 1-56.

Burke GS (1919) Notes on Bacillus botulinus. J Bacteriol 4, 555-570.1.

Bengtson IA (1922) Preliminary note on a toxin-producing anaerobe isolated from the larvae of Lucilia caesar. Public Health Rep 37, 164-170.

Meyer KF & Gunnison JB (1928) Cl. botulinum type D Sp. N. Sci Proc 26, 88-89.

Gunnison JB, Cummings JR & Meyer KF (1936) Clostridium botulinum type E. Proc Soc Exp Biol Med 35, 278-280.

Moller V & Scheibel I (1959) Preliminary report on the isolation of an apparently new type of Cl. botulinum. Acta Pathol Microbiol Scand 44, 554-559.

Gimenez D & Ciccarelli AS (1970) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215, 221-224.

Zhang S, Masuyer G, Zhang J, Shen Y, Henriksson L, Miyashita SI, Martínez-Carranza M, Dong M & Stenmark P (2017) Identification and characterization of a novel botulinum neurotoxin. Nat Commun 8, 14130.

Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J, Schwartzman JA, Tao L, Masuyer G, Martínez-Carranza M, Stenmark P et al. (2018) Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23, 169-176.e6.

Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P & Gill SS (2019) A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 10, 1-10.

Mansfield MJ, Adams JB & Doxey AC (2015) Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett 589, 342-348.

Doxey AC, Mansfield MJ & Montecucco C (2018) Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147, 2-12.

Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79, 591-617.

Atlas RM (2002) Bioterrorism: from threat to reality. Annu Rev Microbiol 56, 167-185.

Jabbari B (2016) History of botulinum toxin treatment in movement disorders. Tremor Other Hyperkinet Mov (N Y) 6, 394.

Rapp DE, Lucioni A, Katz EE, O'Connor RC, Gerber GS & Bales GT (2004) Use of botulinum - a toxin for the treatment of refractory overactive bladder symptoms: an initial experience. Urology 63, 1071-1075.

Cheshire WP, Abashian SW & Mann JD (1994) Botulinum toxin in the treatment of myofascial pain syndrome. Pain 59, 65-69.

Silberstein S, Mathew N, Saper J & Jenkins S (2000) Botulinum toxin type a as a migraine preventive treatment. For the BOTOX migraine clinical research group. Headache 40, 445-450.

Bonventre PF (1979) Absorption of botulinal toxin from the gastrointestinal tract. Rev Infect Dis 1, 663-667.

Binz T & Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109, 1584-1595.

Fischer A & Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282, 29604-29611.

Pantano S & Montecucco C (2014) The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 71, 793-811.

Collins MD & East AK (1998) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84, 5-17.

Rossetto O, Pirazzini M & Cesare M (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12, 535-549.

Matsui T, Gu S, Lam KH, Carter LG, Rummel A, Mathews II & Jin R (2014) Structural basis of the pH-dependent assembly of a botulinum neurotoxin complex. J Mol Biol 426, 3773-3782.

Lee K, Lam KW, Kruel AM, Mahrhold S, Perry K, Cheng LW, Rummel A & Jin R (2015) Inhibiting oral intoxication of botulinum neurotoxin A complex by carbohydrate receptor mimics. Toxicon 107, 43-49.

Lam KH & Jin R (2015) Architecture of the botulinum neurotoxin complex: architecture_LAB molecular machine for protection and delivery. Curr Opin Struct Biol 31, 89-95.

Gustafsson R, Berntsson RPA, Martínez-Carranza M, El Tekle G, Odegrip R, Johnson EA & Stenmark P (2017) Crystal structures of OrfX2 and P47 from a botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 591, 3781-3792.

Lam KH, Qi R, Liu S, Kroh A, Yao G, Perry K, Rummel A & Jin R (2018) The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon 147, 19-26.

Košenina S & Stenmark P (2022) Crystal structure of the OrfX1 - OrfX3 complex from the PMP1 neurotoxin gene cluster. FEBS Lett 597, 515-523.

Gao L, Lam KH, Liu S, Przykopanski A, Lübke J, Qi R, Krüger M, Nowakowska MB, Selby K, Douillard FP et al. (2023) Crystal structures of OrfX1, OrfX2 and the OrfX1-OrfX3 complex from the orfX gene cluster of botulinum neurotoxin E1. FEBS Lett 597, 524-537.

Eisele KH, Fink K, Vey M & Taylor HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57, 555-565.

Ohishi I, Sugii S & Sakaguchi G (1977) Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun 16, 107-109.

Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A & Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335, 977-981.

Eswaramoorthy S, Sun J, Li H, Singh BR & Swaminathan S (2015) Molecular assembly of clostridium botulinum progenitor M complex of type E. Sci Rep 5, 1-9.

Martínez-Carranza M, Škerlová J, Lee P-G, Zhang J, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L et al. (2023) Structure and activity of botulinum neurotoxin X. bioRxiv. doi: 10.1101/2023.01.11.523524

Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O, Zanotti G, Binz T & Montecucco C (2016) The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 6, 1-7.

Schiavo G, Rossetto O, Santucci A, DasGupta BR & Montecucco C (1992) Botulinum neurotoxins are zinc proteins. J Biol Chem 267, 23479-23483.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539.

Košenina S, Masuyer G, Zhang S, Dong M & Stenmark P (2019) Crystal structure of the catalytic domain of the Weissella oryzae botulinum-like toxin. FEBS Lett 593, 1403-1410.

Hasegawa H & Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19, 341-348.

Luo Y, Frey EA, Pfuetzner RA, Creaght AL, Knoechel DG, Haynes CA, Finlay BB & Strynadka NCJ (2000) Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073-1077.

Hamburger ZA, Brown MS, Isberg RR & Bjorkman PJ (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291-295.

Raman R, Rajanikanth V, Palaniappan RUM, Lin YP, He H, McDonough SP, Sharma Y & Chang YF (2010) Big domains are novel Ca2+−binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins. PLoS One 5, e14377.

Yang YH, Jiang YL, Zhang J, Wang L, Bai XH, Zhang SJ, Ren YM, Li N, Zhang YH, Zhang Z et al. (2014) Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 10, 4-15.

Whelan F, Lafita A, Griffiths SC, Cooper REM, Whittingham JL, Turkenburg JP, Manfield IW, St John AN, Paci E, Bateman A et al. (2019) Defining the remarkable structural malleability of a bacterial surface protein rib domain implicated in infection. Proc Natl Acad Sci USA 116, 26540-26548.

Hill KK & Smith TJ (2013) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364, 1-20.

Elad N, Bellapadrona G, Houben L, Sagi I & Elbaum M (2017) Detection of isolated protein-bound metal ions by single-particle cryo-STEM. Proc Natl Acad Sci USA 114, 11139-11144.

Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A & Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46, D624-D632.

Segelke B, Knapp M, Kadkhodayan S, Balhorn R & Rupp B (2004) Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc Natl Acad Sci USA 101, 6888-6893.

Koriazova LK & Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10, 13-18.

Krissinel E & Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 148, 148-162.

Young G, Hundt N, Cole D, Fineberg A, Andrecka J, Tyler A, Olerinyova A, Ansari A, Marklund EG, Collier MP et al. (2018) Quantitative mass imaging of single molecules HHS public access. Science 360, 423-427.

Martin TG, Boland A, Fitzpatrick AWP & Scheres SHW (2016) Graphene oxide grid preparation. Figshare. doi: 10.6084/m9.figshare.3178669.v1

Punjani A, Rubinstein JL, Fleet DJ & Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296.

Punjani A, Brubaker MA & Fleet DJ (2017) Building proteins in a day: efficient 3D molecular structure estimation with electron cryomicroscopy. IEEE Trans Pattern Anal Mach Intell 39, 706-718.

Scheres SHW & Chen S (2016) Prevention of overfitting in cryo-EM structure determination. Nat Methods 9, 853-854.

Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486-501.

Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A et al. (2020) Improved protein structure prediction using potentials from deep learning. Nature 577, 706-710.

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung L-W, Jain S, McCoy AJ et al. (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D 75, 861-877.

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS & Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66, 12-21.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...