Gastropod Mucus: Interdisciplinary Perspectives on Biological Activities, Applications, and Strategic Priorities

. 2023 Oct 09 ; 9 (10) : 5567-5579. [epub] 20230926

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37751898

Terrestrial gastropod mucus exhibits multifunctional attributes, enabling diverse applications. This comprehensive review integrates insights across biomedicine, biotechnology, and intellectual property to elucidate the bioactivities, physicochemical properties, and ecological roles of snail and slug mucus. Following an overview of mucus functional roles in gastropods, promising applications are highlighted in wound healing, antimicrobials, biomaterials, and cosmetics, alongside key challenges. An analysis of global patent trends reveals surging innovation efforts to leverage gastropod mucus. Strategic priorities include bioprospecting natural diversity, optimizing stabilization systems, recombinant biosynthesis, and fostering collaboration to translate promising potentials sustainably into impactful technologies. Ultimately, harnessing the remarkable multifunctionality of gastropod mucus holds immense opportunities for transformative innovations in biomedicine, biotechnology, and beyond.

Zobrazit více v PubMed

Ito S.; et al. High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica. Biosci Biotechnol Biochem 2011, 75, 20–25. 10.1271/bbb.100389. PubMed DOI

Shirtcliffe N. J.; McHale G.; Newton M. I. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces. PLoS One 2012, 7, e3698310.1371/journal.pone.0036983. PubMed DOI PMC

Greistorfer S.; et al. Snail mucus - glandular origin and composition in Helix pomatia. Zoology (Jena) 2017, 122, 126–138. 10.1016/j.zool.2017.05.001. PubMed DOI

Ng T. P.; et al. Snails and their trails: the multiple functions of trail-following in gastropods. Biol. Rev. Camb Philos. Soc. 2013, 88, 683–700. 10.1111/brv.12023. PubMed DOI

Noothuan N.; Apitanyasai K.; Panha S.; Tassanakajon A. Snail mucus from the mantle and foot of two land snails, Lissachatina fulica and Hemiplecta distincta, exhibits different protein profile and biological activity. BMC Res. Notes 2021, 14, 138.10.1186/s13104-021-05557-0. PubMed DOI PMC

Deng T.; et al. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 2023, 14, 396.10.1038/s41467-023-35907-4. PubMed DOI PMC

Smith A. M.; Huynh P.; Griffin S.; Baughn M.; Monka P. Strong, Non-specific Adhesion Using C-Lectin Heterotrimers in a Molluscan Defensive Secretion. Integr Comp Biol. 2021, 61, 1440–1449. 10.1093/icb/icab100. PubMed DOI

Gentili V.; et al. HelixComplex snail mucus as a potential technology against O3 induced skin damage. PLoS One 2020, 15, e022961310.1371/journal.pone.0229613. PubMed DOI PMC

Inisghts C. M.Global Snail Beauty Products Market Analysis; Coherent Market Insights, 2022.https://www.coherentmarketinsights.com/press-release/global-snail-beauty-products-market-to-surpass-us-7695-million-by-2025-754.

von Byern J.; et al. The structure of the cutaneous pedal glands in the banded snail Cepaea hortensis (Muller, 1774). J. Morphol 2018, 279, 187–198. 10.1002/jmor.20763. PubMed DOI

Greistorfer S.; et al. Characterization of the Arion vulgaris pedal gland system. J. Morphol 2020, 281, 1059–1071. 10.1002/jmor.21231. PubMed DOI PMC

Braun M.; Menges M.; Opoku F.; Smith A. M. The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue. J. Exp Biol. 2012, 216, 1475–1483. 10.1242/jeb.077149. PubMed DOI

McDermott M.; et al. Advancing Discovery of Snail Mucins Function and Application. Front Bioeng Biotechnol 2021, 9, 734023.10.3389/fbioe.2021.734023. PubMed DOI PMC

Nualnisachol P.; Chumnanpuen P.; E-kobon T. Understanding Snail Mucus Biosynthesis and Shell Biomineralisation through Genomic Data Mining of the Reconstructed Carbohydrate and Glycan Metabolic Pathways of the Giant African Snail (Achatina fulica). Biology (Basel) 2023, 12, 836.10.3390/biology12060836. PubMed DOI PMC

Werneke S. W.; Swann C.; Farquharson L. A.; Hamilton K. S.; Smith A. M. The role of metals in molluscan adhesive gels. J. Exp Biol. 2007, 210, 2137–2145. 10.1242/jeb.006098. PubMed DOI

Tachapuripunya V.; Roytrakul S.; Chumnanpuen P.; E-kobon T. Unveiling Putative Functions of Mucus Proteins and Their Tryptic Peptides in Seven Gastropod Species Using Comparative Proteomics and Machine Learning-Based Bioinformatics Predictions. Molecules 2021, 26, 3475.10.3390/molecules26113475. PubMed DOI PMC

Bulat T.; et al. Transcriptomic and Proteomic Analysis of Arion vulgaris–Proteins for Probably Successful Survival Strategies?. PLoS One 2016, 11, e015061410.1371/journal.pone.0150614. PubMed DOI PMC

Cook A. Functional aspects of the mucus-producing glands of the Systellommatophoran slug, Veronicella floridana. Journal of Zoology 1987, 211, 291–305. 10.1111/j.1469-7998.1987.tb01535.x. DOI

Campion M. The Structure and Function of the Cutaneous Glands in Helix aspersa. Journal of Cell Science 1961, s3–102, 195–216. 10.1242/jcs.s3-102.58.195. DOI

McKee A.; Voltzow J.; Pernet B. Substrate attributes determine gait in a terrestrial gastropod. Biol. Bull. 2013, 224, 53–61. 10.1086/BBLv224n1p53. PubMed DOI

Iwamoto M.; Ueyama D.; Kobayashi R. The advantage of mucus for adhesive locomotion in gastropods. J. Theor. Biol. 2014, 353, 133–141. 10.1016/j.jtbi.2014.02.024. PubMed DOI

Smith A. M.; Morin M. C. Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snails. Biol. Bull. 2002, 203, 338–346. 10.2307/1543576. PubMed DOI

Kastner J.; et al. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore. PLoS One 2014, 9, e8650010.1371/journal.pone.0086500. PubMed DOI PMC

Meldau S.; Kästner J.; von Knorre D.; Baldwin I. T. Salicylic acid-dependent gene expression is activated by locomotion mucus of different molluscan herbivores. Communicative & Integrative Biology 2014, 7, e28728.10.4161/cib.28728. PubMed DOI PMC

Gould J.; Valdez J. W.; Upton R. Adhesive defence mucus secretions in the red triangle slug (Triboniophorus graeffei) can incapacitate adult frogs. Ethology 2019, 125, 587.10.1111/eth.12875. DOI

Mair J.; Port G. R. The Influence of Mucus Production by the Slug, Deroceras reticulatum, on Predation by Pterostichus madidus and Nebria brevicollis (Coleoptera: Carabidae). Biocontrol Science and Technology 2002, 12, 325–335. 10.1080/09583150220128112. DOI

Ballard K. R.; Klein A. H.; Hayes R. A.; Wang T.; Cummins S. F. The protein and volatile components of trail mucus in the Common Garden Snail, Cornu aspersum. PLoS One 2021, 16, e025156510.1371/journal.pone.0251565. PubMed DOI PMC

Patel K.; Shaheen N.; Witherspoon J.; Robinson N.; Harrington M. A. Mucus trail tracking in a predatory snail: olfactory processing retooled to serve a novel sensory modality. Brain Behav 2014, 4, 83–94. 10.1002/brb3.198. PubMed DOI PMC

Vong A.; Ansart A.; Dahirel M. Dispersers are more likely to follow mucus trails in the land snail Cornu aspersum. Naturwissenschaften 2019, 106, 43.10.1007/s00114-019-1642-9. PubMed DOI

Shibuya K.; Chiba S.; Kimura K.. Sexual inactivation induced by the mucus that covers land snail love darts: sexual selection and evolution of allohormones in hermaphrodites. J. Exp Biol. 2022, 225,10.1242/jeb.238782. PubMed DOI

Song Y.; et al. Wound-healing activity of glycoproteins from white jade snail (Achatina fulica) on experimentally burned mice. Int. J. Biol. Macromol. 2021, 175, 313–321. 10.1016/j.ijbiomac.2021.01.193. PubMed DOI

Harlis W. O.; et al. Effectiveness of snail mucus gel (Achatina fulica Ferr) on mice (Mus musculus L.) burns. Jurnal Pijar Mipa 2023, 18, 325–329. 10.29303/jpm.v18i3.4803. DOI

Tasevska T.; Glavas Dodov M.; Shalabalija D.; Mihailova L.; Polenakovic R.; Simonoska Crcarevska M. Spray-dried snail mucus as raw material with potential for chronic wound treatment. Macedonian pharmaceutical bulletin 2022, 68, 317–318. 10.33320/maced.pharm.bull.2022.68.03.153. DOI

Rosanto Y. B.; Hasan C. Y.; Lnu R.; Surya A. The Potential of Snail (Achatina Fulica) Mucus Gel as a Phythopharmaca to Accelerate the Inflammation Process during Wound Healing. World Journal of Dentistry 2022, 13, 224–227. 10.5005/jp-journals-10015-2056. DOI

Rosanto Y. B.; Hasan C. Y.; Rahardjo R.; Pangestiningsih T. W. Effect of snail mucus on angiogenesis during wound healing. F1000Research 2021, 10, 181.10.12688/f1000research.51297.1. PubMed DOI PMC

Igaap S.; Sumerti N. N.; Nuratni N. K. Cytotoxicity Test of Active Compounds Natural Ingredients of Snail Mucus (Achatina fulica) Against BHK-21 Fibroblast Cells. Biomedical and Pharmacology Journal 2023, 16, 371–387. 10.13005/bpj/2619. DOI

Mencucci R. GlicoPro, Novel Standardized and Sterile Snail Mucus Extract for Multi-Modulative Ocular Formulations: New Perspective in Dry Eye Disease Management. Pharmaceutics 2021, 13, 2139.10.3390/pharmaceutics13122139. PubMed DOI PMC

Kantawong F.; et al. Mucus of Achatina fulica stimulates mineralization and inflammatoryresponse in dental pulp cells. Turkish Journal of Biology 2016, 40, 353–359. 10.3906/biy-1505-29. DOI

Alogna A. Design of Liposomes Carrying HelixComplex Snail Mucus: Preliminary Studies. Molecules 2021, 26, 4709.10.3390/molecules26164709. PubMed DOI PMC

El-Attar A. A. Silver/Snail Mucous PVA Nanofibers: Electrospun Synthesis and Antibacterial and Wound Healing Activities. Membranes (Basel) 2022, 12, 536.10.3390/membranes12050536. PubMed DOI PMC

Zhou Z.; et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. Biomaterials 2023, 299, 122141.10.1016/j.biomaterials.2023.122141. PubMed DOI

Di Filippo M. F.; et al. Functional properties of chitosan films modified by snail mucus extract. Int. J. Biol. Macromol. 2020, 143, 126–135. 10.1016/j.ijbiomac.2019.11.230. PubMed DOI

Lopez Angulo D. E.; do Amaral Sobral P. J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int. J. Biol. Macromol. 2016, 92, 645–653. 10.1016/j.ijbiomac.2016.07.029. PubMed DOI

Perpelek M. Bioactive snail mucus-slime extract loaded chitosan scaffolds for hard tissue regeneration: the effect of mucoadhesive and antibacterial extracts on physical characteristics and bioactivity of chitosan matrix. Biomed Mater. 2021, 16, 065008.10.1088/1748-605X/ac2352. PubMed DOI

Ajisafe V. A.; Raichur A. M. Snail Mucus from Achatina fulica as a Biomaterial Exhibits Pro-Survival Effects on Human Chondrocytes. ACS Biomater Sci. Eng. 2023, 9, 4208–4222. 10.1021/acsbiomaterials.3c00392. PubMed DOI

Tamburaci S.; et al. Fabrication of Helix aspersa Extract Loaded Gradient Scaffold with an Integrated Architecture for Osteochondral Tissue Regeneration: Morphology, Structure, and In Vitro Bioactivity. ACS Appl. Bio Mater. 2023, 6, 1504–1514. 10.1021/acsabm.2c01050. PubMed DOI PMC

Cilia G.; Fratini F.. Antimicrobial properties of terrestrial snail and slug mucus. J. Complement Integr Med. 2018, 15,10.1515/jcim-2017-0168. PubMed DOI

Vassilev N. G. An (1)H NMR- and MS-Based Study of Metabolites Profiling of Garden Snail Helix aspersa Mucus. Metabolites 2020, 10, 360.10.3390/metabo10090360. PubMed DOI PMC

Pitt S. J.; et al. Identification and characterisation of anti - Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu aspersum. Br J. Biomed Sci. 2019, 76, 129–136. 10.1080/09674845.2019.1603794. PubMed DOI

Pitt S. J.; Graham M. A.; Dedi C. G.; Taylor-Harris P. M.; Gunn A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br J. Biomed Sci. 2015, 72, 174–181. 10.1080/09674845.2015.11665749. PubMed DOI

Okeniyi F. A.; et al. Antimicrobial potentials of mucus mucin from different species of giant African land snails on some typed culture pathogenic bacteria. Asian Journal of Agriculture and Biology 2022, 10.35495/ajab.2021.07.294. DOI

Suarez L.; Pereira A.; Hidalgo W.; Uribe N. Antibacterial, Antibiofilm and Anti-Virulence Activity of Biactive Fractions from Mucus Secretion of Giant African Snail Achatina fulica against Staphylococcus aureus Strains. Antibiotics (Basel) 2021, 10, 1548.10.3390/antibiotics10121548. PubMed DOI PMC

Zhong J.; Wang W.; Yang X.; Yan X.; Liu R. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 2013, 39, 1–5. 10.1016/j.peptides.2012.09.001. PubMed DOI

Swastini I. G. A. A. P.; et al. Identification of active chemical compounds and potential antibacterial snail mucus (Achatina fulica) on bacteria Enterococcus foecalis causes of periodontitis. Indonesia Journal of Biomedical Science 2022, 16, 102–105. 10.15562/ijbs.v16i2.426. DOI

Azeem H. H. A. Antifungal Activity of Soft Tissue Extract from the Garden Snail Helix aspersa (Gastropoda, Mollusca). Molecules 2022, 27, 3170.10.3390/molecules27103170. PubMed DOI PMC

Ho C. Y.; et al. Snail Mucus Enhances Chemosensitivity of Triple-negative Breast Cancer Via Activation of the Fas Pathway. Anticancer Res. 2022, 42, 845–855. 10.21873/anticanres.15542. PubMed DOI

Ellijimi C.; et al. Helix aspersa maxima mucus exhibits antimelanogenic and antitumoral effects against melanoma cells. Biomed Pharmacother 2018, 101, 871–880. 10.1016/j.biopha.2018.03.020. PubMed DOI

Matusiewicz M. In Vitro Influence of Extracts from Snail Helix aspersa Müller on the Colon Cancer Cell Line Caco-2. Int. J. Mol. Sci. 2018, 19, 1064.10.3390/ijms19041064. PubMed DOI PMC

Atta S. A.; Ibrahim A. M.; Megahed F. A. K. In-Vitro Anticancer and Antioxidant Activities of Eremina desertorum (Forsskal, 1775) Snail Mucin. Asian Pacific Journal of Cancer Prevention 2021, 22, 3467–3474. 10.31557/APJCP.2021.22.11.3467. PubMed DOI PMC

Liegertova M.; et al. Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology. Sci. Rep 2022, 12, 21768.10.1038/s41598-022-26335-3. PubMed DOI PMC

Pietrzyk A. J.; Bujacz A.; Mak P.; Potempa B.; Niedziela T. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool. Int. J. Biol. Macromol. 2015, 81, 1059–1068. 10.1016/j.ijbiomac.2015.09.044. PubMed DOI

Amah A. K.; Ewa O.; Karimah M. R.; Elendu M. U.; Yunusa Z. Effect of Archachatina Marginata Mucin on the Aggressive Factors of Gastric Ulcer Challenged Wistar Rat Stomach Tissue. GSC Biol. Pharm. Sci. 2019, 9, 077–082. 10.30574/gscbps.2019.9.1.0163. DOI

Gugliandolo E.; et al. Protective effect of snail secretion filtrate against ethanol-induced gastric ulcer in mice. Sci. Rep 2021, 11, 3638.10.1038/s41598-021-83170-8. PubMed DOI PMC

Agu M. O.; Tsware B. J.; Sunday A. O.; Onwuka J. C.; Anthony H. J. Investigatory Study of Long Term Doses of Costus Afer, Snail Slime, and Their Combination with a Standard Pharmaceutical Drug on Blood Glucose Level of Alloxan Induced Swiss Albino Rat. Open Journal of Medicinal Chemistry 2018, 8, 1.10.4236/ojmc.2018.81001. DOI

Nurudhin A.; et al. The Effect of Snail Mucus (Achatina Fulica) Toward The Activity and Chronicity Indices of Renal Histology in Pristane-Induced Lupus Nephritis Mice Model. Bangladesh Journal of Medical Science 2023, 22, 515–520. 10.3329/bjms.v22i3.65320. DOI

Sutanto Y. S.; Sutanto M.; Agnes Sri Harti A. S. H.; Nony Puspawati N. P. The Potential of Snail Seromucous and Chitosan as Bioimunomodulator for Tuberculosis Therapy. Sains Malaysiana 2021, 50, 3333–3344. 10.17576/jsm-2021-5011-17. DOI

Kodchakorn K.; Chokepaichitkool T.; Kongtawelert P. Purification and characterisation of heparin-like sulfated polysaccharides with potent anti-SARS-CoV-2 activity from snail mucus of Achatina fulica. Carbohydr. Res. 2023, 529, 108832.10.1016/j.carres.2023.108832. PubMed DOI PMC

Trapella C.; et al. HelixComplex snail mucus exhibits pro-survival, proliferative and pro-migration effects on mammalian fibroblasts. Sci. Rep 2018, 8, 17665.10.1038/s41598-018-35816-3. PubMed DOI PMC

Di Filippo M. F.; et al. Novel drug-loaded film forming patch based on gelatin and snail slime. Int. J. Pharm. 2021, 598, 120408.10.1016/j.ijpharm.2021.120408. PubMed DOI

Deyrup-Olsen I.; Louie H.; Martin A. W.; Luchtel D. L. Triggering by ATP of product release by mucous granules of the land slug Ariolimax columbianus. Am. J. Physiol. 1992, 262, C760–765. 10.1152/ajpcell.1992.262.3.C760. PubMed DOI

Kim Y.; Sim W.-J.; Lee J.-s.; Lim T.-G. Snail mucin is a functional food ingredient for skin. Journal of Functional Foods 2022, 92, 105053.10.1016/j.jff.2022.105053. DOI

Vanella L. Standardized Extract from Wastes of Edible Flowers and Snail Mucus Ameliorate Ultraviolet B-Induced Damage in Keratinocytes. Int. J. Mol. Sci. 2023, 24, 10185.10.3390/ijms241210185. PubMed DOI PMC

Messina L. Snail Mucus Filtrate Reduces Inflammation in Canine Progenitor Epidermal Keratinocytes (CPEK). Animals (Basel) 2022, 12, 1848.10.3390/ani12141848. PubMed DOI PMC

Orinya O. F.; et al. Snail Slime: Evaluation of Anti-Inflammatory, Phytochemical and Antioxidant Properties. Journal of Complementary and Alternative Medical Research 2021, 8–13. 10.9734/jocamr/2021/v13i130214. DOI

Leskow A.; Tarnowska M.; Szczuka I.; Diakowska D. The effect of biologically active compounds in the mucus of slugs Limax maximus and Arion rufus on human skin cells. Sci. Rep 2021, 11, 18660.10.1038/s41598-021-98183-6. PubMed DOI PMC

El-Zawawy N. A.; Mona M. M. Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Sci. Rep 2021, 11, 24317.10.1038/s41598-021-03664-3. PubMed DOI PMC

De Zoysa M.Antimicrobial Peptides in Marine Mollusks and Their Potential Applications; John Wiley & Sons Ltd, 2013.

Newar J.; Ghatak A. Studies on the Adhesive Property of Snail Adhesive Mucus. Langmuir 2015, 31, 12155–12160. 10.1021/acs.langmuir.5b03498. PubMed DOI

Cho H.; et al. Intrinsically reversible superglues via shape adaptation inspired by snail epiphragm. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 13774–13779. 10.1073/pnas.1818534116. PubMed DOI PMC

Pawlicki J. M.; et al. The effect of molluscan glue proteins on gel mechanics. J. Exp Biol. 2004, 207, 1127–1135. 10.1242/jeb.00859. PubMed DOI

Li J.; Peng X.; Ma C.; Song Z.; Liu J. Response mechanisms of snails to the pulling force and its potential application in vacuum suction. J. Mech Behav Biomed Mater. 2021, 124, 104840.10.1016/j.jmbbm.2021.104840. PubMed DOI

Mane P. C.; et al. Terrestrial snail-mucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci. Rep 2021, 11, 13068.10.1038/s41598-021-92478-4. PubMed DOI PMC

Di Filippo M. F. Effectiveness of Snail Slime in the Green Synthesis of Silver Nanoparticles. Nanomaterials (Basel) 2022, 12, 3447.10.3390/nano12193447. PubMed DOI PMC

Gubitosa J.; et al. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity. Soft Matter 2020, 16, 10876–10888. 10.1039/D0SM01638A. PubMed DOI

Rizzi V.; et al. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. Journal of Photochemistry and Photobiology B: Biology 2021, 224, 112309.10.1016/j.jphotobiol.2021.112309. PubMed DOI

Onzo A.; et al. Untargeted analysis of pure snail slime and snail slime-induced Au nanoparticles metabolome with MALDI FT-ICR MS. J. Mass Spectrom 2021, 56, e472210.1002/jms.4722. PubMed DOI

Zhong T.; Min L.; Wang Z.; Zhang F.; Zuo B. Controlled self-assembly of glycoprotein complex in snail mucus from lubricating liquid to elastic fiber. RSC Adv. 2018, 8, 13806–13812. 10.1039/C8RA01439F. PubMed DOI PMC

Zhu C.; Zhong T.; Zuo B. Biomimetic Nanofiber by Electrospinning of Snail Mucus. Micro and Nanosystems 2021, 13, 9–12. 10.2174/2210315510666200108110153. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...