Tetraspanins from the liver fluke Opisthorchis viverrini stimulate cholangiocyte migration and inflammatory cytokine production
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
37752807
DOI
10.14411/fp.2023.017
PII: 2023.017
Knihovny.cz E-zdroje
- Klíčová slova
- CD63-like tetraspanins, cholangiocarcinoma, extracellular vesicle (EVs), host-parasite interaction,
- MeSH
- buněčné linie MeSH
- cytokiny MeSH
- dospělí MeSH
- epitelové buňky MeSH
- Fasciola hepatica * MeSH
- lidé MeSH
- Opisthorchis * MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
The liver fluke Opisthorchis viverrini (Poirier, 1886) (Digenea) secretes extracellular vesicles (EVs) bearing CD63-like tetraspanins on their surface. Fluke EVs are actively internalised by host cholangiocytes in the bile ducts, where they drive pathology and promote neoplasia through induction of cellular proliferation and secretion of inflammatory cytokines. We investigated the effects of tetraspanins of the CD63 superfamily by co-culturing recombinant forms of the large extracellular loop (LEL) of O. viverrini tetraspanin-2 (rLEL-Ov-TSP-2) and tetraspanin-3 (rLEL-Ov-TSP-3) with non-cancerous human bile duct (H69) and cholangiocarcinoma (CCA, M213) cell lines. The results showed that cell lines co-cultured with excretory/secretory products from adult O. viverrini (Ov-ES) underwent significantly increased cell proliferation at 48 hours but not 24 hours compared to untreated control cells (P < 0.05), whereas rLEL-Ov-TSP-3 co-culture resulted in significantly increased cell proliferation at both 24 hours (P < 0.05) and 48 hours (P < 0.01) time points. In like fashion, H69 cholangiocytes co-cultured with both Ov-ES and rLEL-Ov-TSP-3 underwent significantly elevated Il-6 and Il-8 gene expression for at least one of the time points assessed. Finally, both rLEL-Ov-TSP-2 and rLEL-Ov-TSP-3 significantly enhanced migration of both M213 and H69 cell lines. These findings indicated that O. viverrini CD63 family tetraspanins can promote a cancerous microenvironment by enhancing innate immune responses and migration of biliary epithelial cells.
Zobrazit více v PubMed
Bassani S., Cingolani L.A. 2012: Tetraspanins: interactions and interplay with integrins. Int. J. Biochem. Cell Biol. 44: 703-708. DOI
Bi H., Zhang Y., Wang S., Fang W., He W., Yin L., Xue Y., Cheng Z., Yang M., Shen J. 2019: Interleukin-8 promotes cell migration via CXCR1 and CXCR2 in liver cancer. Oncol. Lett. 18: 4176-4184. PubMed DOI
Brindley P.J., Bachini M., Ilyas S.I., Khan S.A., Loukas A., Sirica A.E., Teh B.T., Wongkham S., Gores G.J. 2021: Cholangiocarcinoma. Nat. Rev. Dis. Primers 7: 65. PubMed DOI
Chaiyadet S., Krueajampa W., Hipkaeo W., Plosan Y., Piratae S., Sotillo J., Smout M., Sripa B., Brindley P.J., Loukas A., Laha T. 2017: Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes. Sci. Rep. 7: 14342. PubMed DOI
Chaiyadet S., Smout M., Johnson M., Whitchurch C., Turnbull L., Kaewkes S., Sotillo J., Loukas A., Sripa B. 2015a: Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production. Int. J. Parasitol. 45: 773-781. DOI
Chaiyadet S., Sotillo J., Krueajampa W., Thongsen S., Brindley P.J., Sripa B., Loukas A., Laha T. 2019: Vaccination of hamsters with Opisthorchis viverrini extracellular vesicles and vesicle-derived recombinant tetraspanins induces antibodies that block vesicle uptake by cholangiocytes and reduce parasite burden after challenge infection. PLoS Negl. Trop. Dis. 13: e0007450. DOI
Chaiyadet S., Sotillo J., Krueajampa W., Thongsen S., Smout M., Brindley P.J., Laha T., Loukas A. 2022: Silencing of Opisthorchis viverrini tetraspanin gene expression results in reduced secretion of extracellular vesicles. Front. Cell Infect. Microbiol. 12: 827521. PubMed DOI
Chaiyadet S., Sotillo J., Smout M., Cantacessi C., Jones M.K., Johnson M.S., Turnbull L., Whitchurch C.B., Potriquet J., Laohaviroj M., Mulvenna J., Brindley P.J., Bethony J.M., Laha T., Sripa B., Loukas A. 2015b: Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype. J. Infect. Dis. 212: 1636-1645. DOI
Hemler M.E. 2008: Targeting of tetraspanin proteins - potential benefits and strategies. Nat. Rev. Drug Discov. 7: 747-758. PubMed DOI
Hong I.K., Jeoung D.I., Ha K.S., Kim Y.M., Lee H. 2012: Tetraspanin CD151 stimulates adhesion-dependent activation of Ras, Rac, and Cdc42 by facilitating molecular association between beta1 integrins and small GTPases. J. Biol. Chem. 287: 32027-32039. DOI
IARC 2012: Biological agents. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC, Lyon, 499 pp.
Levy S., Shoham T. 2005: The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5: 136-148. PubMed DOI
Marjon K.D., Termini C.M., Karlen K.L., Saito-Reis C., Soria C.E., Lidke K.A., Gillette J.M. 2016: Tetraspanin CD82 regulates bone marrow homing of acute myeloid leukemia by modulating the molecular organization of N-cadherin. Oncogene 35: 4132-4140. PubMed DOI
Ninlawan K., O'Hara S.P., Splinter P.L., Yongvanit P., Kaewkes S., Surapaitoon A., LaRusso N.F., Sripa B. 2010: Opisthorchis viverrini excretory/secretory products induce toll-like receptor 4 upregulation and production of interleukin 6 and 8 in cholangiocyte. Parasitol. Int. 59: 616-621. PubMed DOI
Ono M., Handa K., Withers D.A., Hakomori S. 2000: Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem. Biophys. Res. Commun. 279: 744-750. DOI
Phumrattanaprapin W., Chaiyadet S., Brindley P.J., Pearson M., Smout M.J., Loukas A., Laha T. 2021a: Orally administered Bacillus spores expressing an extracellular vesicle-derived tetraspanin protect hamsters against challenge infection with carcinogenic human liver fluke. J. Infect. Dis. 223: 1445-1455. DOI
Phumrattanaprapin W., Pearson M., Pickering D., Tedla B., Smout M., Chaiyadet S., Brindley P.J., Loukas A., Laha T. 2021b: Monoclonal antibodies targeting an Opisthorchis viverrini extracellular vesicle tetraspanin protect hamsters against challenge infection. Vaccines (Basel) 9: 740. PubMed DOI
Phung L.T., Chaiyadet S., Hongsrichan N., Sotillo J., Dieu H.D.T., Tran C.Q., Brindley P.J., Loukas A., Laha T. 2019: Recombinant Opisthorchis viverrini tetraspanin expressed in Pichia pastoris as a potential vaccine candidate for opisthorchiasis. Parasitol. Res. 118: 3419-3427. PubMed DOI
Piratae S., Tesana S., Jones M.K., Brindley P.J., Loukas A., Lovas E., Eursitthichai V., Sripa B., Thanasuwan S., Laha T. 2012: Molecular characterization of a tetraspanin from the human liver fluke, Opisthorchis viverrini. PLoS Negl. Trop. Dis. 6: e1939. DOI
Schroder H.M., Hoffmann S.C., Hecker M., Korff T., Ludwig T. 2013: The tetraspanin network modulates MT1-MMP cell surface trafficking. Int. J. Biochem. Cell. Biol. 45: 1133-1144. DOI
Seubert B., Cui H., Simonavicius N., Honert K., Schafer S., Reuning U., Heikenwalder M., Mari B., Kruger A. 2015: Tetraspanin CD63 acts as a pro-metastatic factor via beta-catenin stabilization. Int. J. Cancer 136: 2304-2315. DOI
Smout M.J., Sotillo J., Laha T., Papatpremsiri A., Rinaldi G., Pimenta R.N., Chan L.Y., Johnson M.S., Turnbull L., Whitchurch C.B., Giacomin P.R., Moran C.S., Golledge J., Daly N., Sripa B., Mulvenna J.P., Brindley P.J., Loukas A. 2015: Carcinogenic parasite secretes growth factor that accelerates wound healing and potentially promotes neoplasia. PLoS Pathog. 11: e1005209. PubMed DOI
Sripa B., Brindley P.J., Mulvenna J., Laha T., Smout M.J., Mairiang E., Bethony J.M., Loukas A. 2012: The tumorigenic liver fluke Opisthorchis viverrini-multiple pathways to cancer. Trends Parasitol. 28: 395-407. PubMed DOI
Sripa B., Kaewkes S. 2000: Localisation of parasite antigens and inflammatory responses in experimental opisthorchiasis. Int. J. Parasitol. 30: 735-740. DOI
Sripa B., Kaewkes S., Sithithaworn P., Mairiang E., Laha T., Smout M., Pairojkul C., Bhudhisawasdi V., Tesana S., Thinkamrop B., Bethony J.M., Loukas A., BrindleyP.J. 2007: Liver fluke induces cholangiocarcinoma. PLoS Med. 4: e201. PubMed DOI
Sripa B., Seubwai W., Vaeteewoottacharn K., Sawanyawisuth K., Silsirivanit A., Kaewkong W., Muisuk K., Dana P., Phoomak C., Lert-Itthiporn W., Luvira V., Pairojkul C., Teh B.T., Wongkham S., Okada S., Chamgramol Y. 2020: Functional and genetic characterization of three cell lines derived from a single tumor of an Opisthorchis viverrini-associated cholangiocarcinoma patient. Hum. Cell. 33: 695-708. PubMed DOI
Surapaitoon A., Suttiprapa S., Khuntikeo N., Pairojkul C., Sripa B. 2017: Cytokine profiles in Opisthorchis viverrini stimulated peripheral blood mononuclear cells from cholangiocarcinoma patients. Parasitol. Int. 66: 889-892. PubMed DOI
Syal G., Fausther M., Dranoff J.A. 2012: Advances in cholangiocyte immunobiology. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G1077-1086. PubMed DOI
Techasen A., Loilome W., Namwat N., Khuntikeo N., Puapairoj A., Jearanaikoon P., Saya H., Yongvanit P. 2014: Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis. Tumour Biol. 35: 8645-8652. DOI
Wang H., Zhang W., Zhao J., Zhang L., Liu M., Yan G., Yao J., Yu H., Yang P. 2012: N-Glycosylation pattern of recombinant human CD82 (KAI1), a tumor-associated membrane protein. J. Proteomics 75: 1375-1385. PubMed DOI
Wilson R.A., Jones M.K. 2021: Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int. J. Parasitol. 51: 1213-1232. DOI
Yoshida T., Ebina H., Koyanagi Y. 2009: N-linked glycan-dependent interaction of CD63 with CXCR4 at the Golgi apparatus induces downregulation of CXCR4. Microbiol. Immunol. 53: 629-635. PubMed DOI