A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)
Status Publisher Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37752903
PubMed Central
PMC10518864
DOI
10.1021/acs.jpcc.3c03684
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4 adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4 binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4 adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell.
Zobrazit více v PubMed
Dictor R. A.; Bell A. T. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J. Catal. 1986, 97, 121–136. 10.1016/0021-9517(86)90043-6. DOI
Ratnasamy C.; Wagner J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325–440. 10.1080/01614940903048661. DOI
Pereira M. C.; Oliveira L. C. A.; Murad E. Iron oxide catalysts: Fenton and Fentonlike reactions–a review. Clay Miner. 2012, 47, 285–302. 10.1180/claymin.2012.047.3.01. DOI
Qiao B.; Wang A.; Yang X.; Allard L. F.; Jiang Z.; Cui Y.; Liu J.; Li J.; Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. 10.1038/nchem.1095. PubMed DOI
Lin J.; Wang A.; Qiao B.; Liu X.; Yang X.; Wang X.; Liang J.; Li J.; Liu J.; Zhang T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317. 10.1021/ja408574m. PubMed DOI
Yang X.-F.; Wang A.; Qiao B.; Li J.; Liu J.; Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. 10.1021/ar300361m. PubMed DOI
Wei H.; Liu X.; Wang A.; Zhang L.; Qiao B.; Yang X.; Huang Y.; Miao S.; Liu J.; Zhang T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.10.1038/ncomms6634. PubMed DOI
Qiao B.; Liang J.-X.; Wang A.; Xu C.-Q.; Li J.; Zhang T.; Liu J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924. 10.1007/s12274-015-0796-9. DOI
Sun X.; Lin J.; Zhou Y.; Li L.; Su Y.; Wang X.; Zhang T. FeOx supported single-atom Pd bifunctional catalyst for water gas shift reaction. AIChE J. 2017, 63, 4022–4031. 10.1002/aic.15759. DOI
Liang J. X.; Lin J.; Liu J.; Wang X.; Zhang T.; Li J. Dual Metal Active Sites in an Ir1/FeOx Single-Atom Catalyst: A Redox Mechanism for the Water-Gas Shift Reaction. Angew. Chem. 2020, 59, 12868–12875. 10.1002/anie.201914867. PubMed DOI
Bliem R.; McDermott E.; Ferstl P.; Setvin M.; Gamba O.; Pavelec J.; Schneider M.; Schmid M.; Diebold U.; Blaha P.; Hammer L.; Parkinson G. S. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 2014, 346, 1215–1218. 10.1126/science.1260556. PubMed DOI
Novotný Z.; Argentero G.; Wang Z.; Schmid M.; Diebold U.; Parkinson G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 21610310.1103/PhysRevLett.108.216103. PubMed DOI
Bliem R.; Kosak R.; Perneczky L.; Novotny Z.; Gamba O.; Fobes D.; Mao Z.; Schmid M.; Blaha P.; Diebold U.; Parkinson G. S. Cluster nucleation and growth from a highly supersaturated adatom phase: Silver on magnetite. ACS Nano 2014, 8, 7531–7537. 10.1021/nn502895s. PubMed DOI PMC
Bliem R.; Pavelec J.; Gamba O.; McDermott E.; Wang Z.; Gerhold S.; Wagner M.; Osiecki J.; Schulte K.; Schmid M.; Blaha P.; Diebold U.; Parkinson G. S. Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface. Phys. Rev. B 2015, 92, 07544010.1103/PhysRevB.92.075440. DOI
Bliem R.; van der Hoeven J.; Zavodny A.; Gamba O.; Pavelec J.; de Jongh P. E.; Schmid M.; Diebold U.; Parkinson G. S. An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst. Angew. Chem. 2015, 127, 14205–14208. 10.1002/ange.201507368. PubMed DOI
Jakub Z.; Hulva J.; Meier M.; Bliem R.; Kraushofer F.; Setvin M.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst. Angew. Chem. Int. Ed. 2019, 58, 13961–13968. 10.1002/anie.201907536. PubMed DOI PMC
Jakub Z.; Hulva J.; Ryan P. T.; Duncan D. A.; Payne D. J.; Bliem R.; Ulreich M.; Hofegger P.; Kraushofer F.; Meier M.; Schmid M.; Diebold U.; Parkinson G. S. Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst. Nanoscale 2020, 12, 5866–5875. 10.1039/C9NR10087C. PubMed DOI
Babucci M.; Fang C.-Y.; Perez-Aguilar J. E.; Hoffman A. S.; Boubnov A.; Guan E.; Bare S. R.; Gates B. C.; Uzun A. Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chem. Sci. 2019, 10, 2623–2632. 10.1039/C8SC05287E. PubMed DOI PMC
Chen L.; Ali I. S.; Sterbinsky G. E.; Zhou X.; Wasim E.; Tait S. L. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catal. Sci. Technol. 2021, 11, 2081–2093. 10.1039/D0CY01132K. DOI
Ro I.; Qi J.; Lee S.; Xu M.; Yan X.; Xie Z.; Zakem G.; Morales A.; Chen J. G.; Pan X.; Vlachos D. G.; Caratzoulas S.; Christopher P. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 2022, 609, 287–292. 10.1038/s41586-022-05075-4. PubMed DOI
Farpón M. G.; Henao W.; Plessow P. N.; Andres E.; Arenal R.; Marini C.; Agostini G.; Studt F.; Prieto G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew. Chem. 2023, 135, e20221404810.1002/ange.202214048. PubMed DOI PMC
Lang R.; Li T.; Matsumura D.; Miao S.; Ren Y.; Cui Y. T.; Tan Y.; Qiao B.; Li L.; Wang A.; Wang X.; Zhang T. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 2016, 55, 16054–16058. 10.1002/anie.201607885. PubMed DOI
Amsler J.; Sarma B. B.; Agostini G.; Prieto G.; Plessow P. N.; Studt F. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 2020, 142, 5087–5096. 10.1021/jacs.9b12171. PubMed DOI
Gao P.; Liang G.; Ru T.; Liu X.; Qi H.; Wang A.; Chen F.-E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.10.1038/s41467-021-25061-0. PubMed DOI PMC
Lee C. J.; Sharp M. A.; Smith R. S.; Kay B. D.; Dohnálek Z. Adsorption of ethane, ethene, and ethyne on reconstructed Fe3O4(001). Surf. Sci. 2021, 714, 12193210.1016/j.susc.2021.121932. DOI
Nie S.; Starodub E.; Monti M.; Siegel D. A.; Vergara L.; El Gabaly F.; Bartelt N. C.; de la Figuera J.; McCarty K. F. Insight into magnetite’s redox catalysis from observing surface morphology during oxidation. J. Am. Chem. Soc. 2013, 135, 10091–10098. 10.1021/ja402599t. PubMed DOI
Štubian M.; Bobek J.; Setvin M.; Diebold U.; Schmid M. Fast low-noise transimpedance amplifier for scanning tunneling microscopy and beyond. Rev. Sci. Instrum. 2020, 91, 07470110.1063/5.0011097. PubMed DOI
Choi J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The growth of ultra-thin zirconia films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26, 22500310.1088/0953-8984/26/22/225003. PubMed DOI
Pavelec J.; Hulva J.; Halwidl D.; Bliem R.; Gamba O.; Jakub Z.; Brunbauer F.; Schmid M.; Diebold U.; Parkinson G. S. A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 2017, 146, 01470110.1063/1.4973241. PubMed DOI
Halwidl D.Development of an effusive molecular beam apparatus; Springer, 2016, 10.1007/978-3-658-13536-2. DOI
Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.10.1103/PhysRevB.59.1758. DOI
Sun J.; Remsing R. C.; Zhang Y.; Sun Z.; Ruzsinszky A.; Peng H.; Yang Z.; Paul A.; Waghmare U.; Wu X.; Klein M. L.; Perdew J. P. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. 10.1038/nchem.2535. PubMed DOI
Peng H.; Yang Z.-H.; Perdew J. P.; Sun J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 2016, 6, 04100510.1103/PhysRevX.6.041005. DOI
Bernal-Villamil I.; Gallego S. Charge order at magnetite Fe3O4(001): surface and Verwey phase transitions. J. Phys.: Condens. Matter 2014, 27, 01200110.1088/0953-8984/27/1/012001. PubMed DOI
Kiejna A.; Ossowski T.; Pabisiak T. Surface properties of the clean and Au/Pd covered Fe3O4(111): DFT and DFT+ U study. Phys. Rev. B 2012, 85, 12541410.1103/PhysRevB.85.125414. DOI
Senn M. S.; Wright J. P.; Attfield J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 2012, 481, 173–176. 10.1038/nature10704. PubMed DOI
Köhler L.; Kresse G. Density functional study of CO on Rh (111). Phys. Rev. B 2004, 70, 16540510.1103/PhysRevB.70.165405. DOI
King D. A.; Wells M. G. Molecular beam investigation of adsorption kinetics on bulk metal targets: Nitrogen on tungsten. Surf. Sci. 1972, 29, 454–482. 10.1016/0039-6028(72)90232-4. DOI
Schmid M.; Parkinson G. S.; Diebold U. Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics. ACS Phys. Chem. Au 2023, 3, 44–62. 10.1021/acsphyschemau.2c00031. PubMed DOI PMC
Kreuzer H. J. Thermal desorption kinetics. Langmuir 1992, 8, 774–781. 10.1021/la00039a009. DOI
Gedanken A.; Kuebler N. A.; Robin M. B. An MPI search for the π→ 3 p Rydberg states of ethylene. J. Chem. Phys. 1982, 76, 46–52. 10.1063/1.442746. DOI
Wilden D. G.; Comer J. Rydberg states of C2H4 and C2D4: assignments using the technique of low-energy electron energy-loss spectroscopy. J. Phys. B: At. Mol. Phys. 1980, 13, 1009.10.1088/0022-3700/13/5/026. DOI
Mulliken R. S. The excited states of ethylene. J. Chem. Phys. 1977, 66, 2448–2451. 10.1063/1.434239. DOI
McMurchie L. E.; Davidson E. R. Singlet Rydberg states of ethylene. J. Chem. Phys. 1977, 67, 5613–5618. 10.1063/1.434811. DOI
Gamba O.; Hulva J.; Pavelec J.; Bliem R.; Schmid M.; Diebold U.; Parkinson G. S. The role of surface defects in the adsorption of methanol on Fe3O4(001). Top. Catal. 2017, 60, 420–430. 10.1007/s11244-016-0713-9. PubMed DOI PMC
Parkinson G. S.; Novotný Z.; Jacobson P.; Schmid M.; Diebold U. Room temperature water splitting at the surface of magnetite. J. Am. Chem. Soc. 2011, 133, 12650–12655. 10.1021/ja203432e. PubMed DOI
Parkinson G. S.; Manz T. A.; Novotný Z.; Sprunger P. T.; Kurtz R. L.; Schmid M.; Sholl D. S.; Diebold U. Antiphase domain boundaries at the Fe3O4(001) surface. Phys. Rev. B 2012, 85, 19545010.1103/PhysRevB.85.195450. DOI
Bourgund A.; Lechner B. A. J.; Meier M.; Franchini C.; Parkinson G. S.; Heiz U.; Esch F. Influence of Local Defects on the Dynamics of O–H Bond Breaking and Formation on a Magnetite Surface. J. Phys. Chem. C 2019, 123, 19742–19747. 10.1021/acs.jpcc.9b05547. DOI
Yang J. H.; Kitchaev D. A.; Ceder G. Rationalizing accurate structure prediction in the meta-GGA SCAN functional. Phys. Rev. B 2019, 100, 03513210.1103/PhysRevB.100.035132. DOI
Liang Z.; Kim M.; Li T.; Rai R.; Asthagiri A.; Weaver J. F. Adsorption and oxidation of ethylene on the stoichiometric and O-rich RuO2(110) surfaces. J. Phys. Chem. C 2017, 121, 20375–20386. 10.1021/acs.jpcc.7b06865. DOI
Chen L.; Smith R. S.; Kay B. D.; Dohnálek Z. Adsorption of small hydrocarbons on rutile TiO2(110). Surf. Sci. 2016, 650, 83–92. 10.1016/j.susc.2015.11.002. DOI
Nes G. J. H.; Vos A. Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. III. Single-crystal X-ray structure determination of ethylene at 85 K. Acta Cryst. 1979, 35, 2593–2601. 10.1107/S0567740879009961. DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2009, 22, 02220110.1088/0953-8984/22/2/022201. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 19513110.1103/PhysRevB.83.195131. DOI
Verwey E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328. 10.1038/144327b0. DOI
de la Figuera J.; Novotny Z.; Setvin M.; Liu T.; Mao Z.; Chen G.; N’Diaye A. T.; Schmid M.; Diebold U.; Schmid A. K.; Parkinson G. S. Real-space imaging of the Verwey transition at the (100) surface of magnetite. Phys. Rev. B 2013, 88, 16141010.1103/PhysRevB.88.161410. DOI
Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO adsorption on model single-atom catalysts. Science 2021, 371, 375–379. 10.1126/science.abe5757. PubMed DOI