A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)

. 2023 Sep 21 ; 127 (37) : 18378-18388. [epub] 20230911

Status Publisher Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37752903

The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4 adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4 binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4 adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell.

Zobrazit více v PubMed

Dictor R. A.; Bell A. T. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J. Catal. 1986, 97, 121–136. 10.1016/0021-9517(86)90043-6. DOI

Ratnasamy C.; Wagner J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325–440. 10.1080/01614940903048661. DOI

Pereira M. C.; Oliveira L. C. A.; Murad E. Iron oxide catalysts: Fenton and Fentonlike reactions–a review. Clay Miner. 2012, 47, 285–302. 10.1180/claymin.2012.047.3.01. DOI

Qiao B.; Wang A.; Yang X.; Allard L. F.; Jiang Z.; Cui Y.; Liu J.; Li J.; Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. 10.1038/nchem.1095. PubMed DOI

Lin J.; Wang A.; Qiao B.; Liu X.; Yang X.; Wang X.; Liang J.; Li J.; Liu J.; Zhang T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317. 10.1021/ja408574m. PubMed DOI

Yang X.-F.; Wang A.; Qiao B.; Li J.; Liu J.; Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. 10.1021/ar300361m. PubMed DOI

Wei H.; Liu X.; Wang A.; Zhang L.; Qiao B.; Yang X.; Huang Y.; Miao S.; Liu J.; Zhang T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.10.1038/ncomms6634. PubMed DOI

Qiao B.; Liang J.-X.; Wang A.; Xu C.-Q.; Li J.; Zhang T.; Liu J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924. 10.1007/s12274-015-0796-9. DOI

Sun X.; Lin J.; Zhou Y.; Li L.; Su Y.; Wang X.; Zhang T. FeOx supported single-atom Pd bifunctional catalyst for water gas shift reaction. AIChE J. 2017, 63, 4022–4031. 10.1002/aic.15759. DOI

Liang J. X.; Lin J.; Liu J.; Wang X.; Zhang T.; Li J. Dual Metal Active Sites in an Ir1/FeOx Single-Atom Catalyst: A Redox Mechanism for the Water-Gas Shift Reaction. Angew. Chem. 2020, 59, 12868–12875. 10.1002/anie.201914867. PubMed DOI

Bliem R.; McDermott E.; Ferstl P.; Setvin M.; Gamba O.; Pavelec J.; Schneider M.; Schmid M.; Diebold U.; Blaha P.; Hammer L.; Parkinson G. S. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 2014, 346, 1215–1218. 10.1126/science.1260556. PubMed DOI

Novotný Z.; Argentero G.; Wang Z.; Schmid M.; Diebold U.; Parkinson G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 21610310.1103/PhysRevLett.108.216103. PubMed DOI

Bliem R.; Kosak R.; Perneczky L.; Novotny Z.; Gamba O.; Fobes D.; Mao Z.; Schmid M.; Blaha P.; Diebold U.; Parkinson G. S. Cluster nucleation and growth from a highly supersaturated adatom phase: Silver on magnetite. ACS Nano 2014, 8, 7531–7537. 10.1021/nn502895s. PubMed DOI PMC

Bliem R.; Pavelec J.; Gamba O.; McDermott E.; Wang Z.; Gerhold S.; Wagner M.; Osiecki J.; Schulte K.; Schmid M.; Blaha P.; Diebold U.; Parkinson G. S. Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface. Phys. Rev. B 2015, 92, 07544010.1103/PhysRevB.92.075440. DOI

Bliem R.; van der Hoeven J.; Zavodny A.; Gamba O.; Pavelec J.; de Jongh P. E.; Schmid M.; Diebold U.; Parkinson G. S. An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst. Angew. Chem. 2015, 127, 14205–14208. 10.1002/ange.201507368. PubMed DOI

Jakub Z.; Hulva J.; Meier M.; Bliem R.; Kraushofer F.; Setvin M.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst. Angew. Chem. Int. Ed. 2019, 58, 13961–13968. 10.1002/anie.201907536. PubMed DOI PMC

Jakub Z.; Hulva J.; Ryan P. T.; Duncan D. A.; Payne D. J.; Bliem R.; Ulreich M.; Hofegger P.; Kraushofer F.; Meier M.; Schmid M.; Diebold U.; Parkinson G. S. Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst. Nanoscale 2020, 12, 5866–5875. 10.1039/C9NR10087C. PubMed DOI

Babucci M.; Fang C.-Y.; Perez-Aguilar J. E.; Hoffman A. S.; Boubnov A.; Guan E.; Bare S. R.; Gates B. C.; Uzun A. Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chem. Sci. 2019, 10, 2623–2632. 10.1039/C8SC05287E. PubMed DOI PMC

Chen L.; Ali I. S.; Sterbinsky G. E.; Zhou X.; Wasim E.; Tait S. L. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catal. Sci. Technol. 2021, 11, 2081–2093. 10.1039/D0CY01132K. DOI

Ro I.; Qi J.; Lee S.; Xu M.; Yan X.; Xie Z.; Zakem G.; Morales A.; Chen J. G.; Pan X.; Vlachos D. G.; Caratzoulas S.; Christopher P. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 2022, 609, 287–292. 10.1038/s41586-022-05075-4. PubMed DOI

Farpón M. G.; Henao W.; Plessow P. N.; Andres E.; Arenal R.; Marini C.; Agostini G.; Studt F.; Prieto G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew. Chem. 2023, 135, e20221404810.1002/ange.202214048. PubMed DOI PMC

Lang R.; Li T.; Matsumura D.; Miao S.; Ren Y.; Cui Y. T.; Tan Y.; Qiao B.; Li L.; Wang A.; Wang X.; Zhang T. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 2016, 55, 16054–16058. 10.1002/anie.201607885. PubMed DOI

Amsler J.; Sarma B. B.; Agostini G.; Prieto G.; Plessow P. N.; Studt F. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 2020, 142, 5087–5096. 10.1021/jacs.9b12171. PubMed DOI

Gao P.; Liang G.; Ru T.; Liu X.; Qi H.; Wang A.; Chen F.-E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.10.1038/s41467-021-25061-0. PubMed DOI PMC

Lee C. J.; Sharp M. A.; Smith R. S.; Kay B. D.; Dohnálek Z. Adsorption of ethane, ethene, and ethyne on reconstructed Fe3O4(001). Surf. Sci. 2021, 714, 12193210.1016/j.susc.2021.121932. DOI

Nie S.; Starodub E.; Monti M.; Siegel D. A.; Vergara L.; El Gabaly F.; Bartelt N. C.; de la Figuera J.; McCarty K. F. Insight into magnetite’s redox catalysis from observing surface morphology during oxidation. J. Am. Chem. Soc. 2013, 135, 10091–10098. 10.1021/ja402599t. PubMed DOI

Štubian M.; Bobek J.; Setvin M.; Diebold U.; Schmid M. Fast low-noise transimpedance amplifier for scanning tunneling microscopy and beyond. Rev. Sci. Instrum. 2020, 91, 07470110.1063/5.0011097. PubMed DOI

Choi J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The growth of ultra-thin zirconia films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26, 22500310.1088/0953-8984/26/22/225003. PubMed DOI

Pavelec J.; Hulva J.; Halwidl D.; Bliem R.; Gamba O.; Jakub Z.; Brunbauer F.; Schmid M.; Diebold U.; Parkinson G. S. A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 2017, 146, 01470110.1063/1.4973241. PubMed DOI

Halwidl D.Development of an effusive molecular beam apparatus; Springer, 2016, 10.1007/978-3-658-13536-2. DOI

Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.10.1103/PhysRevB.59.1758. DOI

Sun J.; Remsing R. C.; Zhang Y.; Sun Z.; Ruzsinszky A.; Peng H.; Yang Z.; Paul A.; Waghmare U.; Wu X.; Klein M. L.; Perdew J. P. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. 10.1038/nchem.2535. PubMed DOI

Peng H.; Yang Z.-H.; Perdew J. P.; Sun J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 2016, 6, 04100510.1103/PhysRevX.6.041005. DOI

Bernal-Villamil I.; Gallego S. Charge order at magnetite Fe3O4(001): surface and Verwey phase transitions. J. Phys.: Condens. Matter 2014, 27, 01200110.1088/0953-8984/27/1/012001. PubMed DOI

Kiejna A.; Ossowski T.; Pabisiak T. Surface properties of the clean and Au/Pd covered Fe3O4(111): DFT and DFT+ U study. Phys. Rev. B 2012, 85, 12541410.1103/PhysRevB.85.125414. DOI

Senn M. S.; Wright J. P.; Attfield J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 2012, 481, 173–176. 10.1038/nature10704. PubMed DOI

Köhler L.; Kresse G. Density functional study of CO on Rh (111). Phys. Rev. B 2004, 70, 16540510.1103/PhysRevB.70.165405. DOI

King D. A.; Wells M. G. Molecular beam investigation of adsorption kinetics on bulk metal targets: Nitrogen on tungsten. Surf. Sci. 1972, 29, 454–482. 10.1016/0039-6028(72)90232-4. DOI

Schmid M.; Parkinson G. S.; Diebold U. Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics. ACS Phys. Chem. Au 2023, 3, 44–62. 10.1021/acsphyschemau.2c00031. PubMed DOI PMC

Kreuzer H. J. Thermal desorption kinetics. Langmuir 1992, 8, 774–781. 10.1021/la00039a009. DOI

Gedanken A.; Kuebler N. A.; Robin M. B. An MPI search for the π→ 3 p Rydberg states of ethylene. J. Chem. Phys. 1982, 76, 46–52. 10.1063/1.442746. DOI

Wilden D. G.; Comer J. Rydberg states of C2H4 and C2D4: assignments using the technique of low-energy electron energy-loss spectroscopy. J. Phys. B: At. Mol. Phys. 1980, 13, 1009.10.1088/0022-3700/13/5/026. DOI

Mulliken R. S. The excited states of ethylene. J. Chem. Phys. 1977, 66, 2448–2451. 10.1063/1.434239. DOI

McMurchie L. E.; Davidson E. R. Singlet Rydberg states of ethylene. J. Chem. Phys. 1977, 67, 5613–5618. 10.1063/1.434811. DOI

Gamba O.; Hulva J.; Pavelec J.; Bliem R.; Schmid M.; Diebold U.; Parkinson G. S. The role of surface defects in the adsorption of methanol on Fe3O4(001). Top. Catal. 2017, 60, 420–430. 10.1007/s11244-016-0713-9. PubMed DOI PMC

Parkinson G. S.; Novotný Z.; Jacobson P.; Schmid M.; Diebold U. Room temperature water splitting at the surface of magnetite. J. Am. Chem. Soc. 2011, 133, 12650–12655. 10.1021/ja203432e. PubMed DOI

Parkinson G. S.; Manz T. A.; Novotný Z.; Sprunger P. T.; Kurtz R. L.; Schmid M.; Sholl D. S.; Diebold U. Antiphase domain boundaries at the Fe3O4(001) surface. Phys. Rev. B 2012, 85, 19545010.1103/PhysRevB.85.195450. DOI

Bourgund A.; Lechner B. A. J.; Meier M.; Franchini C.; Parkinson G. S.; Heiz U.; Esch F. Influence of Local Defects on the Dynamics of O–H Bond Breaking and Formation on a Magnetite Surface. J. Phys. Chem. C 2019, 123, 19742–19747. 10.1021/acs.jpcc.9b05547. DOI

Yang J. H.; Kitchaev D. A.; Ceder G. Rationalizing accurate structure prediction in the meta-GGA SCAN functional. Phys. Rev. B 2019, 100, 03513210.1103/PhysRevB.100.035132. DOI

Liang Z.; Kim M.; Li T.; Rai R.; Asthagiri A.; Weaver J. F. Adsorption and oxidation of ethylene on the stoichiometric and O-rich RuO2(110) surfaces. J. Phys. Chem. C 2017, 121, 20375–20386. 10.1021/acs.jpcc.7b06865. DOI

Chen L.; Smith R. S.; Kay B. D.; Dohnálek Z. Adsorption of small hydrocarbons on rutile TiO2(110). Surf. Sci. 2016, 650, 83–92. 10.1016/j.susc.2015.11.002. DOI

Nes G. J. H.; Vos A. Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. III. Single-crystal X-ray structure determination of ethylene at 85 K. Acta Cryst. 1979, 35, 2593–2601. 10.1107/S0567740879009961. DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2009, 22, 02220110.1088/0953-8984/22/2/022201. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 19513110.1103/PhysRevB.83.195131. DOI

Verwey E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328. 10.1038/144327b0. DOI

de la Figuera J.; Novotny Z.; Setvin M.; Liu T.; Mao Z.; Chen G.; N’Diaye A. T.; Schmid M.; Diebold U.; Schmid A. K.; Parkinson G. S. Real-space imaging of the Verwey transition at the (100) surface of magnetite. Phys. Rev. B 2013, 88, 16141010.1103/PhysRevB.88.161410. DOI

Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO adsorption on model single-atom catalysts. Science 2021, 371, 375–379. 10.1126/science.abe5757. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...