Morphofunctional Investigation in a Transgenic Mouse Model of Alzheimer's Disease: Non-Reactive Astrocytes Are Involved in Aβ Load and Reactive Astrocytes in Plaque Build-Up
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37759482
PubMed Central
PMC10526848
DOI
10.3390/cells12182258
PII: cells12182258
Knihovny.cz E-zdroje
- Klíčová slova
- Aβ-aggregates, amyloid plaques, cell–cell interactions, clasmatodendrosis, confocal microscopy, glial cells, hippocampus, neurodegeneration, neuroinflammation, transgenic mouse,
- MeSH
- Alzheimerova nemoc * genetika MeSH
- amyloidní beta-protein MeSH
- amyloidní plaky MeSH
- astrocyty MeSH
- centrální nervový systém MeSH
- myši transgenní MeSH
- myši MeSH
- neurozánětlivé nemoci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloidní beta-protein MeSH
The term neuroinflammation defines the reactions of astrocytes and microglia to alterations in homeostasis in the diseased central nervous system (CNS), the exacerbation of which contributes to the neurodegenerative effects of Alzheimer's disease (AD). Local environmental conditions, such as the presence of proinflammatory molecules, mechanical properties of the extracellular matrix (ECM), and local cell-cell interactions, are determinants of glial cell phenotypes. In AD, the load of the cytotoxic/proinflammatory amyloid β (Aβ) peptide is a microenvironmental component increasingly growing in the CNS, imposing time-evolving challenges on resident cells. This study aimed to investigate the temporal and spatial variations of the effects produced by this process on astrocytes and microglia, either directly or by interfering in their interactions. Ex vivo confocal analyses of hippocampal sections from the mouse model TgCRND8 at different ages have shown that overproduction of Aβ peptide induced early and time-persistent disassembly of functional astroglial syncytium and promoted a senile phenotype of reactive microglia, hindering Aβ clearance. In the late stages of the disease, these patterns were altered in the presence of Aβ-plaques, surrounded by typically reactive astrocytes and microglia. Morphofunctional characterization of peri-plaque gliosis revealed a direct contribution of astrocytes in plaque buildup that might result in shielding Aβ-peptide cytotoxicity and, as a side effect, in exacerbating neuroinflammation.
Department of Anatomy 3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Department of Biology University of Florence 50121 Florence Italy
Department of Experimental and Clinical Medicine University of Florence 50134 Florence Italy
Department of Health Sciences University of Florence 50134 Florence Italy
DMSC Imaging Platform 50134 Florence Italy
General Laboratory Careggi University Hospital 50134 Florence Italy
Zobrazit více v PubMed
McGeer P.L., Itagaki S., Tago H., McGeer E.G. Reactive Microglia in Patients with Senile Dementia of the Alzheimer Type Are Positive for the Histocompatibility Glycoprotein HLA-DR. Neurosci. Lett. 1987;79:195–200. doi: 10.1016/0304-3940(87)90696-3. PubMed DOI
Salminen A., Kaarniranta K., Kauppinen A. Inflammaging: Disturbed Interplay between Autophagy and Inflammasomes. Aging. 2012;4:166–175. doi: 10.18632/aging.100444. PubMed DOI PMC
Tian L., Ma L., Kaarela T., Li Z. Neuroimmune Crosstalk in the Central Nervous System and Its Significance for Neurological Diseases. J. Neuroinflamm. 2012;9:594. doi: 10.1186/1742-2094-9-155. PubMed DOI PMC
Hanisch U.-K., Kettenmann H. Microglia: Active Sensor and Versatile Effector Cells in the Normal and Pathologic Brain. Nat. Neurosci. 2007;10:1387–1394. doi: 10.1038/nn1997. PubMed DOI
Fu R., Shen Q., Xu P., Luo J.J., Tang Y. Phagocytosis of Microglia in the Central Nervous System Diseases. Mol. Neurobiol. 2014;49:1422–1434. doi: 10.1007/s12035-013-8620-6. PubMed DOI PMC
Thal D.R. The Role of Astrocytes in Amyloid β-Protein Toxicity and Clearance. Exp. Neurol. 2012;236:1–5. doi: 10.1016/j.expneurol.2012.04.021. PubMed DOI
Giovannoni F., Quintana F.J. The Role of Astrocytes in CNS Inflammation. Trends Immunol. 2020;41:805–819. doi: 10.1016/j.it.2020.07.007. PubMed DOI PMC
Liu W., Tang Y., Feng J. Cross Talk between Activation of Microglia and Astrocytes in Pathological Conditions in the Central Nervous System. Life Sci. 2011;89:141–146. doi: 10.1016/j.lfs.2011.05.011. PubMed DOI
Cerbai F., Lana D., Nosi D., Petkova-Kirova P., Zecchi S., Brothers H.M., Wenk G.L., Giovannini M.G. The Neuron-Astrocyte-Microglia Triad in Normal Brain Ageing and in a Model of Neuroinflammation in the Rat Hippocampus. PLoS ONE. 2012;7:e45250. doi: 10.1371/journal.pone.0045250. PubMed DOI PMC
Lana D., Ugolini F., Wenk G.L., Giovannini M.G., Zecchi-Orlandini S., Nosi D. Microglial Distribution, Branching, and Clearance Activity in Aged Rat Hippocampus Are Affected by Astrocyte Meshwork Integrity: Evidence of a Novel Cell-cell Interglial Interaction. FASEB J. 2019;33:4007–4020. doi: 10.1096/fj.201801539R. PubMed DOI
Ugolini F., Lana D., Nardiello P., Nosi D., Pantano D., Casamenti F., Giovannini M.G. Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal Regions of TgCRND8 Mice. Front. Aging Neurosci. 2018;10:372. doi: 10.3389/fnagi.2018.00372. PubMed DOI PMC
Nosi D., Lana D., Giovannini M.G., Delfino G., Zecchi-Orlandini S. Neuroinflammation: Integrated Nervous Tissue Response through Intercellular Interactions at the “Whole System” Scale. Cells. 2021;10:1195. doi: 10.3390/cells10051195. PubMed DOI PMC
Giunta B., Fernandez F., Nikolic W.V., Obregon D., Rrapo E., Town T., Tan J. Inflammaging as a Prodrome to Alzheimer’s Disease. J. Neuroinflamm. 2008;5:51. doi: 10.1186/1742-2094-5-51. PubMed DOI PMC
Deleidi M., Jäggle M., Rubino G. Immune Aging, Dysmetabolism, and Inflammation in Neurological Diseases. Front. Neurosci. 2015;9:172. doi: 10.3389/fnins.2015.00172. PubMed DOI PMC
Neher J.J., Neniskyte U., Brown G.C. Primary Phagocytosis of Neurons by Inflamed Microglia: Potential Roles in Neurodegeneration. Front. Pharmacol. 2012;3:27. doi: 10.3389/fphar.2012.00027. PubMed DOI PMC
Vilalta A., Brown G.C. Neurophagy, the Phagocytosis of Live Neurons and Synapses by Glia, Contributes to Brain Development and Disease. FEBS J. 2018;285:3566–3575. doi: 10.1111/febs.14323. PubMed DOI
Brown G.C., Neher J.J. Microglial Phagocytosis of Live Neurons. Nat. Rev. Neurosci. 2014;15:209–216. doi: 10.1038/nrn3710. PubMed DOI
Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI
Colonna M., Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017;35:441–468. doi: 10.1146/annurev-immunol-051116-052358. PubMed DOI PMC
Del Mar Fernández-Arjona M., Grondona J.M., Granados-Durán P., Fernández-Llebrez P., López-Ávalos M.D. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis. Front. Cell. Neurosci. 2017;11:235. doi: 10.3389/fncel.2017.00235. PubMed DOI PMC
Matsumoto Y., Ohmori K., Fujiwara M. Microglial and Astroglial Reactions to Inflammatory Lesions of Experimental Autoimmune Encephalomyelitis in the Rat Central Nervous System. J. Neuroimmunol. 1992;37:23–33. doi: 10.1016/0165-5728(92)90152-B. PubMed DOI
Sofroniew M.V. Molecular Dissection of Reactive Astrogliosis and Glial Scar Formation. Trends Neurosci. 2009;32:638–647. doi: 10.1016/j.tins.2009.08.002. PubMed DOI PMC
Liddelow S.A., Barres B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity. 2017;46:957–967. doi: 10.1016/j.immuni.2017.06.006. PubMed DOI
Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., Bohlen C.J., Schirmer L., Bennett M.L., Münch A.E., Chung W.-S., Peterson T.C., et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature. 2017;541:481–487. doi: 10.1038/nature21029. PubMed DOI PMC
Wheeler M.A., Clark I.C., Tjon E.C., Li Z., Zandee S.E.J., Couturier C.P., Watson B.R., Scalisi G., Alkwai S., Rothhammer V., et al. MAFG-Driven Astrocytes Promote CNS Inflammation. Nature. 2020;578:593–599. doi: 10.1038/s41586-020-1999-0. PubMed DOI PMC
Ma B., Buckalew R., Du Y., Kiyoshi C.M., Alford C.C., Wang W., McTigue D.M., Enyeart J.J., Terman D., Zhou M. Gap Junction Coupling Confers Isopotentiality on Astrocyte Syncytium: Electrical Coupling of Astrocytes in a Syncytium. Glia. 2016;64:214–226. doi: 10.1002/glia.22924. PubMed DOI PMC
Rasmussen M.K., Mestre H., Nedergaard M. Fluid Transport in the Brain. Physiol. Rev. 2022;102:1025–1151. doi: 10.1152/physrev.00031.2020. PubMed DOI PMC
Fróes M.M., Correia A.H.P., Garcia-Abreu J., Spray D.C., Campos de Carvalho A.C., Neto V.M. Gap-Junctional Coupling between Neurons and Astrocytes in Primary Central Nervous System Cultures. Proc. Natl. Acad. Sci. USA. 1999;96:7541–7546. doi: 10.1073/pnas.96.13.7541. PubMed DOI PMC
Mercatelli R., Lana D., Bucciantini M., Giovannini M.G., Cerbai F., Quercioli F., Zecchi-Orlandini S., Delfino G., Wenk G.L., Nosi D. Clasmatodendrosis and Β-amyloidosis in Aging Hippocampus. FASEB J. 2016;30:1480–1491. doi: 10.1096/fj.15-275503. PubMed DOI
Hulse R.E., Winterfield J., Kunkler P.E., Kraig R.P. Astrocytic Clasmatodendrosis in Hippocampal Organ Culture. Glia. 2001;33:169–179. doi: 10.1002/1098-1136(200102)33:2<169::AID-GLIA1016>3.0.CO;2-B. PubMed DOI PMC
Perez-Nievas B.G., Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Front. Aging Neurosci. 2018;10:114. doi: 10.3389/fnagi.2018.00114. PubMed DOI PMC
Yoshiyama Y., Asahina M., Hattori T. Selective Distribution of Matrix Metalloproteinase-3 (MMP-3) in Alzheimer’s Disease Brain. Acta Neuropathol. 2000;99:91–95. doi: 10.1007/PL00007428. PubMed DOI
Palmer J.C., Baig S., Kehoe P.G., Love S. Endothelin-Converting Enzyme-2 Is Increased in Alzheimer’s Disease and Up-Regulated by Aβ. Am. J. Pathol. 2009;175:262–270. doi: 10.2353/ajpath.2009.081054. PubMed DOI PMC
Nielsen H.M., Veerhuis R., Holmqvist B., Janciauskiene S. Binding and Uptake of Aβ1-42 by Primary Human Astrocytes In Vitro. Glia. 2009;57:978–988. doi: 10.1002/glia.20822. PubMed DOI
Zhao J., O’Connor T., Vassar R. The Contribution of Activated Astrocytes to Aβ Production: Implications for Alzheimer’s Disease Pathogenesis. J. Neuroinflamm. 2011;8:150. doi: 10.1186/1742-2094-8-150. PubMed DOI PMC
Yan P., Bero A.W., Cirrito J.R., Xiao Q., Hu X., Wang Y., Gonzales E., Holtzman D.M., Lee J.-M. Characterizing the Appearance and Growth of Amyloid Plaques in APP/PS1 Mice. J. Neurosci. 2009;29:10706–10714. doi: 10.1523/JNEUROSCI.2637-09.2009. PubMed DOI PMC
Kraft A.W., Hu X., Yoon H., Yan P., Xiao Q., Wang Y., Gil S.C., Brown J., Wilhelmsson U., Restivo J.L., et al. Attenuating Astrocyte Activation Accelerates Plaque Pathogenesis in APP/PS1 Mice. FASEB J. 2013;27:187–198. doi: 10.1096/fj.12-208660. PubMed DOI PMC
Guttenplan K.A., Weigel M.K., Prakash P., Wijewardhane P.R., Hasel P., Rufen-Blanchette U., Münch A.E., Blum J.A., Fine J., Neal M.C., et al. Neurotoxic Reactive Astrocytes Induce Cell Death via Saturated Lipids. Nature. 2021;599:102–107. doi: 10.1038/s41586-021-03960-y. PubMed DOI
Wang C., Xiong M., Gratuze M., Bao X., Shi Y., Andhey P.S., Manis M., Schroeder C., Yin Z., Madore C., et al. Selective Removal of Astrocytic APOE4 Strongly Protects against Tau-Mediated Neurodegeneration and Decreases Synaptic Phagocytosis by Microglia. Neuron. 2021;109:1657–1674.e7. doi: 10.1016/j.neuron.2021.03.024. PubMed DOI PMC
Wang H., Kulas J.A., Wang C., Holtzman D.M., Ferris H.A., Hansen S.B. Regulation of Beta-Amyloid Production in Neurons by Astrocyte-Derived Cholesterol. Proc. Natl. Acad. Sci. USA. 2021;118:e2102191118. doi: 10.1073/pnas.2102191118. PubMed DOI PMC
Pardo A.C., Wong V., Benson L.M., Dykes M., Tanaka K., Rothstein J.D., Maragakis N.J. Loss of the Astrocyte Glutamate Transporter GLT1 Modifies Disease in SOD1G93A Mice. Exp. Neurol. 2006;201:120–130. doi: 10.1016/j.expneurol.2006.03.028. PubMed DOI
Matos M., Augusto E., Oliveira C.R., Agostinho P. Amyloid-Beta Peptide Decreases Glutamate Uptake in Cultured Astrocytes: Involvement of Oxidative Stress and Mitogen-Activated Protein Kinase Cascades. Neuroscience. 2008;156:898–910. doi: 10.1016/j.neuroscience.2008.08.022. PubMed DOI
Tong X., Ao Y., Faas G.C., Nwaobi S.E., Xu J., Haustein M.D., Anderson M.A., Mody I., Olsen M.L., Sofroniew M.V., et al. Astrocyte Kir4.1 Ion Channel Deficits Contribute to Neuronal Dysfunction in Huntington’s Disease Model Mice. Nat. Neurosci. 2014;17:694–703. doi: 10.1038/nn.3691. PubMed DOI PMC
Chazalon M., Paredes-Rodriguez E., Morin S., Martinez A., Cristóvão-Ferreira S., Vaz S., Sebastiao A., Panatier A., Boué-Grabot E., Miguelez C., et al. GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Rep. 2018;23:1678–1690. doi: 10.1016/j.celrep.2018.04.014. PubMed DOI
Chao C.-C., Gutiérrez-Vázquez C., Rothhammer V., Mayo L., Wheeler M.A., Tjon E.C., Zandee S.E.J., Blain M., de Lima K.A., Takenaka M.C., et al. Metabolic Control of Astrocyte Pathogenic Activity via CPLA2-MAVS. Cell. 2019;179:1483–1498.e22. doi: 10.1016/j.cell.2019.11.016. PubMed DOI PMC
Polyzos A.A., Lee D.Y., Datta R., Hauser M., Budworth H., Holt A., Mihalik S., Goldschmidt P., Frankel K., Trego K., et al. Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metab. 2019;29:1258–1273.e11. doi: 10.1016/j.cmet.2019.03.004. PubMed DOI PMC
Chishti M.A., Yang D.-S., Janus C., Phinney A.L., Horne P., Pearson J., Strome R., Zuker N., Loukides J., French J., et al. Early-Onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing a Double Mutant Form of Amyloid Precursor Protein 695*. J. Biol. Chem. 2001;276:21562–21570. doi: 10.1074/jbc.M100710200. PubMed DOI
Bellucci A., Luccarini I., Scali C., Prosperi C., Giovannini M.G., Pepeu G., Casamenti F. Cholinergic Dysfunction, Neuronal Damage and Axonal Loss in TgCRND8 Mice. Neurobiol. Dis. 2006;23:260–272. doi: 10.1016/j.nbd.2006.03.012. PubMed DOI
Hamm V., Héraud C., Bott J.-B., Herbeaux K., Strittmatter C., Mathis C., Goutagny R. Differential Contribution of APP Metabolites to Early Cognitive Deficits in a TgCRND8 Mouse Model of Alzheimer’s Disease. Sci. Adv. 2017;3:e1601068. doi: 10.1126/sciadv.1601068. PubMed DOI PMC
Giovannini M.G. Double-Label Confocal Microscopy of Phosphorylated Protein Kinases Involved in Long-Term Potentiation. In: Iyengar R., Hildebrandt J.D., editors. Methods in Enzymology. Volume 345. Academic Press; Cambridge, MA, USA: 2002. pp. 426–436. G Protein Pathways. PubMed
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Arshadi C., Günther U., Eddison M., Harrington K.I.S., Ferreira T.A. SNT: A Unifying Toolbox for Quantification of Neuronal Anatomy. Nat. Methods. 2021;18:374–377. doi: 10.1038/s41592-021-01105-7. PubMed DOI
Ferreira T.A., Blackman A.V., Oyrer J., Jayabal S., Chung A.J., Watt A.J., Sjöström P.J., van Meyel D.J. Neuronal Morphometry Directly from Bitmap Images. Nat. Methods. 2014;11:982–984. doi: 10.1038/nmeth.3125. PubMed DOI PMC
Olabarria M., Noristani H.N., Verkhratsky A., Rodríguez J.J. Concomitant Astroglial Atrophy and Astrogliosis in a Triple Transgenic Animal Model of Alzheimer’s Disease. Glia. 2010;58:831–838. doi: 10.1002/glia.20967. PubMed DOI
Nguyen P.T., Dorman L.C., Pan S., Vainchtein I.D., Han R.T., Nakao-Inoue H., Taloma S.E., Barron J.J., Molofsky A.B., Kheirbek M.A., et al. Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell. 2020;182:388–403.e15. doi: 10.1016/j.cell.2020.05.050. PubMed DOI PMC
Verkhratsky A., Rodrigues J.J., Pivoriunas A., Zorec R., Semyanov A. Astroglial Atrophy in Alzheimer’s Disease. Pflügers Arch. Eur. J. Physiol. 2019;471:1247–1261. doi: 10.1007/s00424-019-02310-2. PubMed DOI
Nagy J.I., Li W., Hertzberg E.L., Marotta C.A. Elevated Connexin43 Immunoreactivity at Sites of Amyloid Plaques in Alzheimer’s Disease. Brain Res. 1996;717:173–178. doi: 10.1016/0006-8993(95)01526-4. PubMed DOI
Cibelli A., Stout R., Timmermann A., de Menezes L., Guo P., Maass K., Seifert G., Steinhäuser C., Spray D.C., Scemes E. Cx43 Carboxyl Terminal Domain Determines AQP4 and Cx30 Endfoot Organization and Blood Brain Barrier Permeability. Sci. Rep. 2021;11:24334. doi: 10.1038/s41598-021-03694-x. PubMed DOI PMC
Kwon M.J., Shin H.Y., Cui Y., Kim H., Thi A.H.L., Choi J.Y., Kim E.Y., Hwang D.H., Kim B.G. CCL2 Mediates Neuron–Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury. J. Neurosci. 2015;35:15934–15947. doi: 10.1523/JNEUROSCI.1924-15.2015. PubMed DOI PMC
Finneran D.J., Nash K.R. Neuroinflammation and Fractalkine Signaling in Alzheimer’s Disease. J. Neuroinflamm. 2019;16:30. doi: 10.1186/s12974-019-1412-9. PubMed DOI PMC
Angelopoulou E., Paudel Y.N., Shaikh M.F., Piperi C. Fractalkine (CX3CL1) Signaling and Neuroinflammation in Parkinson’s Disease: Potential Clinical and Therapeutic Implications. Pharmacol. Res. 2020;158:104930. doi: 10.1016/j.phrs.2020.104930. PubMed DOI
Herman F.J., Pasinetti G.M. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behav. Immun. 2018;73:66–84. doi: 10.1016/j.bbi.2018.06.010. PubMed DOI PMC
Fiebich B.L., Akter S., Akundi R.S. The Two-Hit Hypothesis for Neuroinflammation: Role of Exogenous ATP in Modulating Inflammation in the Brain. Front. Cell. Neurosci. 2014;8:260. doi: 10.3389/fncel.2014.00260. PubMed DOI PMC
Haroon E., Miller A.H., Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology. 2017;42:193–215. doi: 10.1038/npp.2016.199. PubMed DOI PMC
Culmsee C., Michels S., Scheu S., Arolt V., Dannlowski U., Alferink J. Mitochondria, Microglia, and the Immune System-How Are They Linked in Affective Disorders? Front. Psychiatry. 2018;9:739. doi: 10.3389/fpsyt.2018.00739. PubMed DOI PMC
Li W., Kui L., Demetrios T., Gong X., Tang M. A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer’s Disease. Aging Dis. 2020;11:1260–1275. doi: 10.14336/AD.2020.0105. PubMed DOI PMC
Stoyanov S., Sun W., Düsedau H.P., Cangalaya C., Choi I., Mirzapourdelavar H., Baidoe-Ansah D., Kaushik R., Neumann J., Dunay I.R., et al. Attenuation of the Extracellular Matrix Restores Microglial Activity during the Early Stage of Amyloidosis. Glia. 2021;69:182–200. doi: 10.1002/glia.23894. PubMed DOI
Floden A.M., Combs C.K. Microglia Demonstrate Age-Dependent Interaction with Beta-Amyloid Fibrils. J. Alzheimers Dis. 2011;25:279–293. doi: 10.3233/JAD-2011-101014. PubMed DOI PMC
Von Bernhardi R., Eugenín-von Bernhardi L., Eugenín J. Microglial Cell Dysregulation in Brain Aging and Neurodegeneration. Front. Aging Neurosci. 2015;7:124. doi: 10.3389/fnagi.2015.00124. PubMed DOI PMC
Waller R., Baxter L., Fillingham D.J., Coelho S., Pozo J.M., Mozumder M., Frangi A.F., Ince P.G., Simpson J.E., Highley J.R. Iba-1−/CD68+ Microglia Are a Prominent Feature of Age-Associated Deep Subcortical White Matter Lesions. PLoS ONE. 2019;14:e0210888. doi: 10.1371/journal.pone.0210888. PubMed DOI PMC
Bennett F.C., Bennett M.L., Yaqoob F., Mulinyawe S.B., Grant G.A., Hayden Gephart M., Plowey E.D., Barres B.A. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity. Neuron. 2018;98:1170–1183.e8. doi: 10.1016/j.neuron.2018.05.014. PubMed DOI PMC
Van der Poel M., Ulas T., Mizee M.R., Hsiao C.-C., Miedema S.S.M., Adelia, Schuurman K.G., Helder B., Tas S.W., Schultze J.L., et al. Transcriptional Profiling of Human Microglia Reveals Grey–White Matter Heterogeneity and Multiple Sclerosis-Associated Changes. Nat. Commun. 2019;10:1139. doi: 10.1038/s41467-019-08976-7. PubMed DOI PMC
Jha M.K., Jo M., Kim J.-H., Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist. 2019;25:227–240. doi: 10.1177/1073858418783959. PubMed DOI
Bush T.G., Puvanachandra N., Horner C.H., Polito A., Ostenfeld T., Svendsen C.N., Mucke L., Johnson M.H., Sofroniew M.V. Leukocyte Infiltration, Neuronal Degeneration, and Neurite Outgrowth after Ablation of Scar-Forming, Reactive Astrocytes in Adult Transgenic Mice. Neuron. 1999;23:297–308. doi: 10.1016/S0896-6273(00)80781-3. PubMed DOI
Chi S., Cui Y., Wang H., Jiang J., Zhang T., Sun S., Zhou Z., Zhong Y., Xiao B. Astrocytic Piezo1-Mediated Mechanotransduction Determines Adult Neurogenesis and Cognitive Functions. Neuron. 2022;110:2984–2999.e8. doi: 10.1016/j.neuron.2022.07.010. PubMed DOI
Moeendarbary E., Weber I.P., Sheridan G.K., Koser D.E., Soleman S., Haenzi B., Bradbury E.J., Fawcett J., Franze K. The Soft Mechanical Signature of Glial Scars in the Central Nervous System. Nat. Commun. 2017;8:14787. doi: 10.1038/ncomms14787. PubMed DOI PMC
Haupt C., Witte O.W., Frahm C. Up-Regulation of Connexin43 in the Glial Scar Following Photothrombotic Ischemic Injury. Mol. Cell. Neurosci. 2007;35:89–99. doi: 10.1016/j.mcn.2007.02.005. PubMed DOI