Fibroblast growth factors induce hepatic tumorigenesis post radiofrequency ablation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA197081
NCI NIH HHS - United States
CA197081-02
NIH HHS - United States
786575
European Research Council - International
PubMed
37770545
PubMed Central
PMC10539492
DOI
10.1038/s41598-023-42819-2
PII: 10.1038/s41598-023-42819-2
Knihovny.cz E-zdroje
- MeSH
- cytokiny MeSH
- fibroblastové růstové faktory MeSH
- hepatocelulární karcinom * patologie MeSH
- indukovaná hypertermie * MeSH
- karcinogeneze MeSH
- katetrizační ablace * MeSH
- lidé MeSH
- myši MeSH
- nádory jater * patologie MeSH
- radiofrekvenční ablace * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokiny MeSH
- fibroblastové růstové faktory MeSH
Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.
Zobrazit více v PubMed
European Association For The Study Of The Liver EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018;69(1):182–236. PubMed
Meloni MF, et al. Breast cancer liver metastases: US-guided percutaneous radiofrequency ablation—Intermediate and long-term survival rates. Radiology. 2009;253(3):861–869. PubMed PMC
Livraghi T, et al. Hepatocellular carcinoma: Radio-frequency ablation of medium and large lesions. Radiology. 2000;214(3):761–768. PubMed
Nault JC, et al. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 2018;68(4):783–797. PubMed
Solbiati L, et al. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: Local response rate and long-term survival with up to 10-year follow-up. Radiology. 2012;265(3):958–968. PubMed
Sotirchos VS, et al. Colorectal cancer liver metastases: Biopsy of the ablation zone and margins can be used to predict oncologic outcome. Radiology. 2016;280(3):949–959. PubMed PMC
Petre EN, Sofocleous C. Thermal ablation in the management of colorectal cancer patients with oligometastatic liver disease. Visc. Med. 2017;33(1):62–68. PubMed PMC
Ahmed M, et al. Hepatic radiofrequency ablation-induced stimulation of distant tumor growth is suppressed by c-Met inhibition. Radiology. 2016;279(1):103–117. PubMed PMC
Velez E, et al. Hepatic thermal ablation: Effect of device and heating parameters on local tissue reactions and distant tumor growth. Radiology. 2016;281(3):782–792. PubMed PMC
Rozenblum N, et al. Oncogenesis: An "Off-Target" effect of radiofrequency ablation. Radiology. 2015;276(2):426–432. PubMed
Markezana A, et al. Moderate hyperthermic heating encountered during thermal ablation increases tumor cell activity. Int. J. Hyperth. 2020;37(1):119–129. PubMed PMC
Erinjeri JP, et al. Image-guided thermal ablation of tumors increases the plasma level of interleukin-6 and interleukin-10. J. Vasc. Interv. Radiol. 2013;24(8):1105–1112. PubMed PMC
Ahmed M, et al. Systemic siRNA nanoparticle-based drugs combined with radiofrequency ablation for cancer therapy. PLoS ONE. 2015;10(7):e0128910. PubMed PMC
Rozenblum N, et al. Radiofrequency ablation: Inflammatory changes in the periablative zone can induce global organ effects, including liver regeneration. Radiology. 2015;276(2):416–425. PubMed
Markezana A, et al. Incomplete thermal ablation of tumors promotes increased tumorigenesis. Int. J. Hyperth. 2021;38(1):263–272. PubMed
Kumar G, et al. Targeting STAT3 to suppress systemic pro-oncogenic effects from hepatic radiofrequency ablation. Radiology. 2018;286(2):524–536. PubMed PMC
Nakagawa H, et al. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation. Cancer Immunol. Immunother. 2014;63(4):347–356. PubMed PMC
Aly HH, et al. Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. J. Hepatol. 2007;46(1):26–36. PubMed
Yarmolenko PS, et al. Thresholds for thermal damage to normal tissues: An update. Int. J. Hyperth. 2011;27(4):320–343. PubMed PMC
Mertyna P, et al. Radiofrequency ablation: The effect of distance and baseline temperature on thermal dose required for coagulation. Int. J. Hyperth. 2008;24(7):550–559. PubMed
Yang W, et al. Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model. Int. J. Hyperth. 2011;27(6):527–538. PubMed PMC
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867. PubMed PMC
Liao H, et al. Thermal ablation induces transitory metastatic growth by means of the STAT3/c-Met molecular pathway in an intrahepatic colorectal cancer mouse model. Radiology. 2020;294(2):464–472. PubMed PMC
Chae YK, et al. Phase II study of AZD4547 in patients with tumors harboring aberrations in the FGFR pathway: Results from the NCI-MATCH trial (EAY131) subprotocol W. J. Clin. Oncol. 2020;38(21):2407–2417. PubMed PMC
Coombes RC, et al. Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat. Commun. 2022;13(1):3246. PubMed PMC
Katzenellenbogen M, et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol. Cancer Res. 2007;5(11):1159–1170. PubMed
Chang Q, et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 2013;15(7):848–862. PubMed PMC
Maher JJ. Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride. J. Clin. Investig. 1993;91(5):2244–2252. PubMed PMC
Stanger BZ. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 2015;77:179–200. PubMed PMC
Jondal DE, et al. Heat stress and hepatic laser thermal ablation induce hepatocellular carcinoma growth: Role of PI3K/mTOR/AKT signaling. Radiology. 2018;288(3):730–738. PubMed PMC
Qiu GH, et al. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 2015;67(1):1–12. PubMed PMC
Jin-no K, et al. Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J. Gastroenterol. 1997;32(1):119–121. PubMed
Li Y, et al. Up-regulation of fibroblast growth factor 19 and its receptor associates with progression from fatty liver to hepatocellular carcinoma. Oncotarget. 2016;7(32):52329–52339. PubMed PMC
Hyeon J, et al. Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig. Dis. Sci. 2013;58(7):1916–1922. PubMed
Miura S, et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer. 2012;12:56. PubMed PMC
Hoshi T, et al. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem. Biophys. Res. Commun. 2019;513(1):1–7. PubMed
Camacho JC, Petre EN, Sofocleous CT. Thermal ablation of metastatic colon cancer to the liver. Semin. Interv. Radiol. 2019;36(4):310–318. PubMed PMC
Thompson SM, et al. Heat stress and thermal ablation induce local expression of nerve growth factor inducible (VGF) in hepatocytes and hepatocellular carcinoma: preclinical and clinical studies. Gene Expr. 2018;19(1):37–47. PubMed PMC
Nijkamp MW, et al. Accelerated perinecrotic outgrowth of colorectal liver metastases following radiofrequency ablation is a hypoxia-driven phenomenon. Ann. Surg. 2009;249(5):814–823. PubMed
Wang JN, et al. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene. 2018;674:57–69. PubMed
Schumacher JD, Guo GL. Regulation of hepatic stellate cells and fibrogenesis by fibroblast growth factors. Biomed. Res. Int. 2016;2016:8323747. PubMed PMC
Mejhert N, et al. Mapping of the fibroblast growth factors in human white adipose tissue. J. Clin. Endocrinol. Metab. 2010;95(5):2451–2457. PubMed
Thompson SM, et al. Heat stress-induced PI3K/mTORC2-dependent AKT signaling is a central mediator of hepatocellular carcinoma survival to thermal ablation induced heat stress. PLoS ONE. 2016;11(9):e0162634. PubMed PMC
Shady W, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget. 2017;8(39):66117–66127. PubMed PMC
Seitz T, et al. Fibroblast Growth Factor 9 is expressed by activated hepatic stellate cells and promotes progression of hepatocellular carcinoma. Sci. Rep. 2020;10(1):4546. PubMed PMC
Wang Y, et al. FGF/FGFR signaling in hepatocellular carcinoma: From carcinogenesis to recent therapeutic intervention. Cancers (Basel) 2021;13(6):1360. PubMed PMC
Andrasina T, et al. Thermal ablation and transarterial chemoembolization are characterized by changing dynamics of circulating microRNAs. J. Vasc. Interv. Radiol. 2021;32(3):403–411. PubMed
Cohen I, et al. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1) in breast cancer invasion: Signaling partners, hierarchy and physiological significance. PLoS ONE. 2010;5(6):e11135. PubMed PMC
Edrei Y, et al. Vascular profile characterization of liver tumors by magnetic resonance imaging using hemodynamic response imaging in mice. Neoplasia. 2011;13(3):244–253. PubMed PMC
Charni-Natan M, Goldstein I. Protocol for primary mouse hepatocyte isolation. STAR Protoc. 2020;1(2):100086. PubMed PMC
Gavine PR, et al. AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012;72(8):2045–2056. PubMed
Van Haele M, et al. YAP and TAZ heterogeneity in primary liver cancer: An analysis of its prognostic and diagnostic role. Int. J. Mol. Sci. 2019;20(3):638. PubMed PMC
Guilliams M, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell. 2022;185(2):379–396.e38. PubMed PMC
Heng TS, Painter MW. The Immunological Genome Project: Networks of gene expression in immune cells. Nat. Immunol. 2008;9(10):1091–1094. PubMed