Group comparisons of the individual electroretinogram time trajectories for the ascending limb of the b-wave using a raw and registered time series
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37773138
PubMed Central
PMC10542250
DOI
10.1186/s13104-023-06535-4
PII: 10.1186/s13104-023-06535-4
Knihovny.cz E-zdroje
- Klíčová slova
- Curve registration, Electroretinogram, Time domain analysis, b-Wave,
- MeSH
- časové faktory MeSH
- dítě MeSH
- elektroretinografie metody MeSH
- lidé MeSH
- poruchy autistického spektra * MeSH
- retina MeSH
- světelná stimulace metody MeSH
- výzkumný projekt MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The electroretinogram is a clinical test commonly used in the diagnosis of retinal disorders with the peak time and amplitude of the a- and b-waves used as the main indicators of retinal function. However, subtle changes that affect the shape of the electroretinogram waveform may occur in the early stages of disease or in conditions that have a neurodevelopmental or neurodegenerative origin. In such cases, we introduce a statistical approach to mathematically model the shape of the electroretinogram waveform that may aid clinicians and researchers using the electroretinogram or other biological signal recordings to identify morphological features in the waveforms that may not be captured by the time or time-frequency domains of the waveforms. We present a statistical graphics-based analysis of the ascending limb of the b-wave (AL-b) of the electroretinogram in children with and without a diagnosis of autism spectrum disorder (ASD) with a narrative explanation of the statistical approach to illustrate how different features of the waveform based on location and scale derived from raw and registered time series can reveal subtle differences between the groups. RESULTS: Analysis of the raw time trajectories confirmed findings of previous studies with a reduced and delayed b-wave amplitude in ASD. However, when the individual time trajectories were registered then group differences were visible in the mean amplitude at registered time ~ 0.6 suggesting a novel method to differentiate groups using registration of the ERG waveform.
Centre for Change and Complexity in Learning The University of South Australia Adelaide Australia
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
UCL Great Ormond Street Institute of Child Health University College London London UK
Zobrazit více v PubMed
Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, Holder GE, Brodie SE. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26. PubMed PMC
Ameri H, Naser M, Choudhury F, Rao NA. Electroretinogram and visual field correlation in birdshot chorioretinopathy. Asia Pac J Ophthalmol (Phila) 2021;10(2):208–211. PubMed
Sakti DH, Ali H, Korsakova M, Saakova N, Mustafic N, Fraser CL, Jamieson RV, Cornish EE, Grigg JR. Electronegative electroretinogram in the modern multimodal imaging era. Clin Exp Ophthalmol. 2022;50(4):429–440. PubMed PMC
Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M, Li S, McCulloch DL. ISCEV Standard for full-field clinical electroretinography (2022 update) Doc Ophthalmol. 2022;144(3):165–177. PubMed PMC
Wachtmeister L. Some aspects of the oscillatory response of the retina. Prog Brain Res. 2001;131:465–474. PubMed
Mahroo OA, Ban VS, Bussmann BM, Copley HC, Hammond CJ, Lamb TD. Modelling the initial phase of the human rod photoreceptor response to the onset of steady illumination. Doc Ophthalmol. 2012;124(2):125–131. PubMed
Friedburg C, Allen CP, Mason PJ, Lamb TD. Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J Physiol. 2004;556(Pt 3):819–834. PubMed PMC
Smith NP, Lamb TD. The a-wave of the human electroretinogram recorded with a minimally invasive technique. Vision Res. 1997;37(21):2943–2952. PubMed
Forte JD, Bui BV, Vingrys AJ. Wavelet analysis reveals dynamics of rat oscillatory potentials. J Neurosci Methods. 2008;169(1):191–200. PubMed
Gauvin M, Dorfman AL, Trang N, Gauthier M, Little JM, Lina JM, Lachapelle P. Assessing the contribution of the oscillatory potentials to the genesis of the photopic ERG with the Discrete Wavelet Transform. Biomed Res Int. 2016;2016:2790194. PubMed PMC
Gauvin M, Lina JM, Lachapelle P. Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. Biomed Res Int. 2014;2014:246096. PubMed PMC
Gauvin M, Little JM, Lina JM, Lachapelle P. Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis. 2015;15(16):14. PubMed
Gauvin M, Sustar M, Little JM, Brecelj J, Lina JM, Lachapelle P. Quantifying the ON and OFF contributions to the flash ERG with the Discrete Wavelet Transform. Transl Vis Sci Technol. 2017;6(1):3. PubMed PMC
Dorfman AL, Gauvin M, Vatcher D, Little JM, Polomeno RC, Lachapelle P. Ring analysis of multifocal oscillatory potentials (mfOPs) in cCSNB suggests near-normal ON-OFF pathways at the fovea only. Doc Ophthalmol. 2020;141(2):99–109. PubMed
Brandao LM, Monhart M, Schötzau A, Ledolter AA, Palmowski-Wolfe AM. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field. Doc Ophthalmol. 2017;135(1):29–42. PubMed PMC
Constable PA, Marmolejo-Ramos F, Gauthier M, Lee IO, Skuse DH, Thompson DA. Discrete Wavelet Transform analysis of the electroretinogram in autism spectrum disorder and attention deficit hyperactivity disorder. Front Neurosci. 2022;16:890461. PubMed PMC
Mohammad-Manjur S, Hossain M-B, Constable PA, Thompson DA, Marmolejo-Ramos F, Lee IO, Skuse D, Posada-Quintero HF. Detecting autism spectrum disorder using spectral analysis of electroretinogram and machine learning: Preliminary results. IEEE Trans Biomed Eng. 2022;2022:3435–3438. PubMed
Johnson MA, Jeffrey BG, Messias AMV, Robson AG. ISCEV extended protocol for the stimulus-response series for the dark-adapted full-field ERG b-wave. Doc Ophthalmol. 2019;138(3):217–227. PubMed PMC
Hamilton R, Bees MA, Chaplin CA, McCulloch DL. The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res. 2007;47(23):2968–2972. PubMed
Constable PA, Gaigg SB, Bowler DM, Jägle H, Thompson DA. Full-field electroretinogram in autism spectrum disorder. Doc Ophthalmol. 2016;132(2):83–99. PubMed
Lee IO, Skuse DH, Constable PA, Marmolejo-Ramos F, Olsen LR, Thompson DA. The electroretinogram b-wave amplitude: a differential physiological measure for attention deficit hyperactivity disorder and autism spectrum disorder. J Neurodev Disord. 2022;14(1):30. PubMed PMC
Constable PA, Ritvo ER, Ritvo AR, Lee IO, McNair ML, Stahl D, Sowden J, Quinn S, Skuse DH, Thompson DA, McPartland JC. Light-adapted electroretinogram differences in autism spectrum disorder. J Autism Dev Disord. 2020;50(8):2874–2885. PubMed
Ramsay JO. When the data are functions. Psychometrika. 1982;47(4):379–396.
Ramsay JO, Dalzell CJ. Some tools for functional data analysis. J R Stat Soc Ser B Methodol. 1991;53(3):539–572.
Ramsay JO, Silverman BW. Functional data analysis. New York: Springer; 2005.
Ramsay JO, Hooker G, Graves S. Functional data analysis with R and MATLAB. New York: Springer; 2009.
Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. Robust statistics: the approach based on influence functions. New York: John Wiley & Sons; 1986.
Constable PA, Lee IO, Marmolejo-Ramos F, Skuse DH, Thompson DA. The photopic negative response in autism spectrum disorder. Clin Exp Optom. 2021;104(8):841–847. PubMed
American Psychiatric Association . Diagnostic and statistical manual of mental disorders (DSM-IV-TR) Washington DC: American Psychiatric Association; 2000.
American Psychiatric Association . Diagnostic and statistical manual of mental disorders: DSM-5™. 5. Arlington: American Psychiatric Publishing; 2013.
Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord. 2007;37(4):613–627. PubMed
Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, Schopler E. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19(2):185–212. PubMed
Skuse DH, Warrington R, Bishop D, Chowdhury U, Lau J, Mandy W, Place M. The developmental, dimensional and diagnostic interview (3di): a novel computerized assessment for autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2004;43(5):548–558. PubMed
Baylor DA, Lamb TD, Yau KW. The membrane current of single rod outer segments. J Physiol. 1979;288:589–611. PubMed PMC
Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci. 1994;35(2):635–645. PubMed
Heynen H, van Norren D. Origin of the electroretinogram in the intact macaque eye–II. Current source-density analysis. Vision Res. 1985;25(5):709–715. PubMed
Gouras P, MacKay C. A new component in the a-wave of the human cone electroretinogram. Doc Ophthalmol. 2000;101(1):19–24. PubMed
Glinton SL, Calcagni A, Lilaonitkul W, Pontikos N, Vermeirsch S, Zhang G, Arno G, Wagner SK, Michaelides M, Keane PA, et al. Phenotyping of ABCA4 retinopathy by machine learning analysis of full-field electroretinography. Transl Vis Sci Technol. 2022;11(9):34–34. PubMed PMC
Maturo F, Verde R. Supervised classification of curves via a combined use of functional data analysis and tree-based methods. Comput Statis. 2023;38(1):419–459.
Cornish EE, Vaze A, Jamieson RV, Grigg JR. The electroretinogram in the genomics era: outer retinal disorders. Eye. 2021;35(9):2406–2418. PubMed PMC
Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42(2):514–522. PubMed
Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol. 2004;122(3):341–346. PubMed
Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006;113(1):53–59. PubMed
Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, Terasaki H. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci. 2007;48(2):820–824. PubMed
Mahroo OA. Visual electrophysiology and “the potential of the potentials”. Eye. 2023;37(12):2399–2408. PubMed PMC
Hamilton R. Clinical electrophysiology of vision-commentary on current status and future prospects. Eye. 2021;35(9):2341–2343. PubMed PMC
Lavoie J, Maziade M, Hébert M. The brain through the retina: the flash electroretinogram as a tool to investigate psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:129–134. PubMed
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci. 2023;17:1215097. PubMed PMC
Clementi L, Gregorio C, Savare L, Ieva F, Santambrogio MD, Sangalli LM. A functional data analysis approach to left ventricular remodeling assessment. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:3505–3508. PubMed
Duhamel A, Devos P, Bourriez JL, Preda C, Defebvre L, Beuscart R. Functional data analysis for gait curves study in Parkinson's disease. Stud Health Technol Inform. 2006;124:569–574. PubMed
Shangguan P, Qiu T, Liu T, Zou S, Liu Z, Zhang S. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state. Physiol Meas. 2021;41(12):125004. PubMed
Almonte MT, Capellàn P, Yap TE, Cordeiro MF. Retinal correlates of psychiatric disorders. Ther Adv Chronic Dis. 2020;11:2040622320905215. PubMed PMC
Silverstein SM, Thompson JL. Progress, possibilities, and pitfalls in electroretinography research in psychiatry. Biol Psychiatry. 2020;87(3):202–203. PubMed
Remodeling the light-adapted electroretinogram using a bayesian statistical approach