Remodeling the light-adapted electroretinogram using a bayesian statistical approach
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39849598
PubMed Central
PMC11760095
DOI
10.1186/s13104-025-07115-4
PII: 10.1186/s13104-025-07115-4
Knihovny.cz E-zdroje
- Klíčová slova
- Attention deficit hyperactivity disorder, Neurodevelopment, Retina, Time-domain ERG trajectory,
- MeSH
- Bayesova věta MeSH
- dítě MeSH
- elektroretinografie * metody MeSH
- hyperkinetická porucha * patofyziologie diagnóza MeSH
- lidé MeSH
- mladiství MeSH
- retina * patofyziologie MeSH
- studie případů a kontrol MeSH
- světelná stimulace MeSH
- světlo * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To present a remodeling of the electroretinogram waveform using a covariance matrix to identify regions of interest and distinction between a control and attention deficit/hyperactivity disorder (ADHD) group. Electroretinograms were recorded in n = 25 ADHD (16 male; age 11.9 ± 2.7 years) and n = 38 (8 male; age 10.4 ± 2.8 years neurotypical control participants as part of a broad study into the determining if the electroretinogram could be a biomarker for ADHD. Flash strengths of 0.6 and 1.2 log cd.s.m- 2 on a white 40 cd.m- 2 background were used. Averaged waveforms from each eye and flash strength were analyzed with Bayesian regularization of the covariance matrices using 100 equal length time intervals. The eigenvalues of the covariance matrices were ranked for each group to indicate the degree of complexity within the regularized waveforms. RESULTS: The correlation matrices indicated less correlation within the waveforms for the ADHD group in time intervals beyond 70 msec. The eigenvalue plots suggest more complexity within the ADHD group compared to the control group. Consideration of the correlation structure between ERG waveforms from different populations may reveal additional features for identifying group differences in clinical populations.
Biomedical Engineering Department University of Connecticut Storrs CT 06269 USA
College of Education Psychology and Social Work Flinders University Adelaide Australia
National Institute of Public Health Srobarova 48 Prague 10 100 00 Czech Republic
Zobrazit více v PubMed
Robson JG, Saszik SM, Ahmed J, Frishman LJ. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol. 2003;547(Pt 2):509–30. 10.1113/jphysiol.2002.030304. PubMed PMC
Bhatt Y, Hunt DM, Carvalho LS. The origins of the full-field flash electroretinogram b-wave. Front Mol Neurosci. 2023;16:1153934. 10.3389/fnmol.2023.1153934. PubMed PMC
Thompson DA, Feather S, Stanescu HC, Freudenthal B, Zdebik AA, et al. Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J Physiol. 2011;589(Pt 7):1681–89. 10.1113/jphysiol.2010.198531. PubMed PMC
Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et al. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018;36(3):207–11. 10.1007/s10633-018-9638-x. PubMed PMC
Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M, et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol. 2022;144(3):165–77. 10.1007/s10633-022-09872-0. PubMed PMC
Jung R, Kempf M, Righetti G, Nasser F, Kuhlewein L, Stingl K, et al. Age-dependencies of the electroretinogram in healthy subjects. Doc Ophthalmol. 2024;149(2):99–113. 10.1007/s10633-024-09991-w. PubMed PMC
Gauvin M, Little JM, Lina JM, Lachapelle P. Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis. 2015;15(16):14. 10.1167/15.16.14. PubMed
Gauvin M, Lina JM, Lachapelle P. Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. Biomed Res Int. 2014;2014:246096. 10.1155/2014/246096. PubMed PMC
Constable PA, Marmolejo-Ramos F, Gauthier M, Lee IO, Skuse DH, Thompson DA. Discrete Wavelet transform analysis of the electroretinogram in Autism Spectrum disorder and attention deficit hyperactivity disorder. Front Neurosci. 2022;16:890461. 10.3389/fnins.2022.890461. PubMed PMC
Zhdanov A, Constable P, Manjur SM, Dolganov A, Posada-Quintero HF, Lizunov A. OculusGraphy: signal analysis of the electroretinogram in a rabbit model of endophthalmitis using discrete and continuous wavelet transforms. Bioengineering. 2023;10(6). 10.3390/bioengineering10060708. PubMed PMC
Ahmadieh H, Behbahani S, Safi S. Continuous wavelet transform analysis of ERG in patients with diabetic retinopathy. Doc Ophthalmol. 2021;142(3):305–14. 10.1007/s10633-020-09805-9. PubMed
Albasu F, Kulyabin M, Zhdanov A, Dolganov A, Ronkin M, Borisov V, et al. Electroretinogram analysis using a short-time Fourier transform and Machine Learning techniques. Bioengineering. 2024;11(9):866. PubMed PMC
Posada-Quintero HF, Manjur SM, Hossain MB, Marmolejo-Ramos F, Lee IO, Skuse DH, et al. Autism spectrum disorder detection using variable frequency complex demodulation of the electroretinogram. Res Aut Spec Disord. 2023;109:102258. 10.1016/j.rasd.2023.102258.
Mohammad-Manjur S, Hossain M-B, Constable PA, Thompson DA, Marmolejo-Ramos F, Lee IO, et al. Detecting Autism Spectrum disorder using spectral analysis of electroretinogram and machine learning: preliminary results. IEEE Trans Biomed Eng. 2022;2022:3435–38. 10.1109/EMBC48229.2022.9871173. PubMed
Kulyabin M, Zhdanov A, Dolganov A, Maier A. Optimal combination of mother wavelet and AI model for precise classification of pediatric electroretinogram signals. Sensors. 2023;23(13):5813. 10.3390/s23135813. PubMed PMC
Kulyabin M, Zhdanov A, Dolganov A, Ronkin M, Borisov V, Maier A. Enhancing electroretinogram classification with multi-wavelet analysis and visual transformer. Sensors. 2023;23(21). 10.3390/s23218727. PubMed PMC
Brabec M, Constable PA, Thompson DA, Marmolejo-Ramos F. Group comparisons of the individual electroretinogram time trajectories for the ascending limb of the b-wave using a raw and registered time series. BMC Res Notes. 2023;16(1):238; doi10.1186/s13104-023-06535-4. PubMed PMC
Ramsay JO. When the data are functions. Psychometrika. 1982;47(4):379–96. 10.1007/BF02293704.
Ullah S, Finch CF. Applications of functional data analysis: a systematic review. BMC Med Res Methodol. 2013;13:43. 10.1186/1471-2288-13-43. PubMed PMC
Lewandowski D, Kurowicka D, Joe H. Generating random correlation matrices based on vines and extended onion method. J Multivar Anal. 2009;100(9):1989–2001. 10.1016/j.jmva.2009.04.008.
Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a \probabilistic programming language. J Stat Softw. 2017;76. 10.18637/jss.v076.i01. PubMed PMC
American Psychiatric Association. Diagnostic and statistical Manual of Mental disorders V. American Psychiatric Association; 2013.
Constable PA, Skuse DH, Thompson DA, Lee IO. (2024). Brief report: effects of methylphenidate on the light adapted electroretinogram. 2024; Doc Ophthalmol. 10.1007/s10633-024-10000-3 PubMed
Wood SN. Thin plate regression splines. J Roy Stat Soc: Ser B (Statistical Methodology). 2003;65(1):95–114. 10.1111/1467-9868.00374.
Wood SN. Generalized additive models: an introduction with R. 2nd ed. New York: Chapman and Hall/CRC; 2017.
Kotz S, Nadarajah S. Multivariate t-distributions and their applications. https://doi.org/DOI: Cambridge University Press; 2004. 10.1017/CBO9780511550683.
Bühlmann P, van de Geer S. Statistics for high-dimensional data. 1st ed. Heidelberg: Springer Berlin; 2011.
McLachlan GJ. Discriminant Analysis and Statistical Pattern Recognition. Wiley; 2004.
Trevor Hastie R, Tibshirani, Friedman J. The elements of statistical learning. Data Mining, Inference, and Prediction. 2nd ed. Heidelberg: Springer Berlin; 2009.
Richard O, Duda PE, Hart DG, Stork. Pattern classification. 2nd ed. Wiley; 2000.
Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42(2):514–22. PubMed
Bubl E, Dorr M, Riedel A, Ebert D, Philipsen A, Bach M, et al. Elevated background noise in adult attention deficit hyperactivity disorder is associated with inattention. PLoS ONE. 2015;10(2):e0118271. 10.1371/journal.pone.0118271. PubMed PMC
Dubois MA, Pelletier CA, Merette C, Jomphe V, Turgeon R, Belanger RE, et al. Evaluation of electroretinography (ERG) parameters as a biomarker for ADHD. Prog Neuropsychopharmacol Biol Psychiatry. 2023;127:110807. 10.1016/j.pnpbp.2023.110807. PubMed
Lee IO, Skuse DH, Constable PA, Marmolejo-Ramos F, Olsen LR, Thompson DA. (2022). The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J Neurodev Disord. 2022;14(1):30; 10.1186/s11689-022-09440-2 PubMed PMC
Constable PA, Gaigg SB, Bowler DM, Jägle H, Thompson DA. Full-field electroretinogram in autism spectrum disorder. Doc Ophthalmol. 2016;132(2):83–99. 10.1007/s10633-016-9529-y. PubMed
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci. 2023;17:1215097. 10.3389/fnins.2023.1215097. PubMed PMC
Mahroo OA. Visual electrophysiology and the potential of the potentials. Eye. 2023;37(12):2399–408. 10.1038/s41433-023-02491-2. PubMed PMC
Creel DJ. Visually evoked potentials. Handb Clin Neurol. 2019;160:501–22. 10.1016/b978-0-444-64032-1.00034-5. PubMed
Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol. 2016;27:118–24. 10.1097/icu.0000000000000241. PubMed PMC