Reduced Radial Curves of Diatomic Molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37774238
PubMed Central
PMC10601484
DOI
10.1021/acs.jctc.3c00622
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The prospect of using the concept of a universal reduced potential energy curve (RPC) for a broader class of radial molecular functions is explored by performing appropriate model calculations for the electric dipole moment functions of the hydrogen halides HF, HCl, and HBr. The reduced radial functions of the model systems, constructed from their best available theoretical approximants, coincide so closely that they can be used as few-parameter universal representations of functions available in the literature. Given the mathematical nature of the problem addressed here, the results are not limited to the functions studied but can be applied equally well to all radial molecular functions that have similar shapes, such as electric quadrupole moment and dipole polarizability functions.
Zobrazit více v PubMed
Born M.; Oppenheimer R. Quantum theory of molecules. Ann. Phys. 1927, 84, 0457–0484.
Buckingham A. D. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces. Adv. Chem. Phys. 1967, 12, 107–142. 10.1002/9780470143582.ch2. DOI
Brown J. M.; Colburn E. A.; Watson J. K. G.; Wayne F. D. Effective Hamiltonian for diatomic-molecules - Ab initio calculations of parameters of HCl+. J. Mol. Spectrosc. 1979, 74, 294–318.
Augustovičová L. D.; Špirko V. Morphing radial molecular property functions of hydroxyl. J. Quant. Spectrosc. Radiat. Transfer 2020, 254, 1072110.1016/j.jqsrt.2020.107211. DOI
Jenč F. The reduced potential curve (RPC) method and its applications. Int. Rev. Phys. Chem. 1996, 15, 467–563. 10.1080/01442359609353191. DOI
Hollebeek T.; Ho T. S.; Rabitz H. Constructing multidimensional molecular potential energy surfaces from ab initio data. Annu. Rev. Phys. Chem. 1999, 50, 537–570. 10.1146/annurev.physchem.50.1.537. PubMed DOI
Špirko V.; Li X.; Paldus J. Potential energy curve of N2 revisited. Collect. Czech. Chem. Commun. 2011, 76, 327–341. 10.1135/cccc2010151. DOI
Stine J. R.; Noid D. W. A semiclassical inversion procedure for the dipole-moment function for diatomic molecules. J. Chem. Phys. 1983, 78, 3647–3651. 10.1063/1.445193. DOI
Trischka J.; Salwen H. Dipole moment function of diatomic molecules. J. Chem. Phys. 1959, 31, 218–225. 10.1063/1.1730297. DOI
Ferguson A. F.; Parkinson D. The hydroxyl bands in the nightglow. Planet. Space Sci. 1963, 11, 149–159. 10.1016/0032-0633(63)90136-3. DOI
Špirko V.; Blabla J. Nuclear-quadrupole coupling functions of the 1-SIGMA-G+ and 3-PI-OU+ states of molecular-iodine. J. Mol. Spectrosc. 1988, 129, 59–71.
Henderson R. D. E.; Shayesteh A.; Tao J.; Haugen C. C.; Bernath P. F.; Le Roy R. J. Accurate Analytic Potential and Born-Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis. J. Phys. Chem. A 2013, 117, 13373–13387. 10.1021/jp406680r. PubMed DOI
Yurchenko S. N.; Lodi L.; Tennyson J.; Stolyarov A. V. Duo: A general program for calculating spectra of diatomic molecules. Comput. Phys. Commun. 2016, 202, 262–275. 10.1016/j.cpc.2015.12.021. DOI
Medvedev E. S.; Meshkov V. V.; Stolyarov A. V.; Ushakov V. G.; Gordon I. E. Impact of the dipole-moment representation on the intensity of high overtones. J. Mol. Spectrosc. 2016, 330, 36–42. 10.1016/j.jms.2016.06.013. DOI
Ushakov V. G.; Meshkov V. V.; Ermilov A. Yu.; Stolyarov A. V.; Gordon I. E.; Medvedev E. S. Long-range potentials and dipole moments of the CO electronic states converging to the ground dissociation limit. Phys. Chem. Chem. Phys. 2020, 22, 12058–12067. 10.1039/D0CP01696A. PubMed DOI
Medvedev E. S.; Ushakov V. G. Effect of the analytical form of the dipole-moment function on the rotational intensity distributions in the high-overtone vibrational bands of carbon monoxide. J. Quant. Spectrosc. Radiat. Transfer 2021, 272, 10780310.1016/j.jqsrt.2021.107803. DOI
Meshkov V. V.; Ermilov A. Yu.; Stolyarov A. V.; Medvedev E. S.; Ushakov V. G.; Gordon I. E. Semi-empirical dipole moment of carbon monoxide and line lists for all its isotopologues revisited. J. Quant. Spectrosc. Radiat. Transfer 2022, 280, 10809010.1016/j.jqsrt.2022.108090. DOI
Medvedev E. S.; Ushakov V. G. Irregular semi-empirical dipole-moment function for carbon monoxide and line lists for all its isotopologues verified for extremely high overtone transitions. J. Quant. Spectrosc. Radiat. Transfer 2022, 288, 10825510.1016/j.jqsrt.2022.108255. DOI
Araújo J. P.; Ballester M. Y. A comparative review of 50 analytical representation of potential energy interaction for diatomic systems: 100 years of history. Int. J. Quantum Chem. 2021, 121, e2680810.1002/qua.26808. DOI
Janzen A. R.; Aziz R. A. An accurate potential energy curve for helium based on ab initio calculations. J. Chem. Phys. 1997, 107, 914–919. 10.1063/1.474444. DOI
Špirko V.; Sauer S. P. A.; Szalewicz K. Relation between properties of long-range diatomic bound states. Phys. Rev. A 2013, 87, 01251010.1103/PhysRevA.87.012510. DOI
Jenč F. The reduced potential curve method for diatomic-molecules and its applications. Adv. At. Mol. Phys. 1983, 19, 265–307. 10.1016/S0065-2199(08)60255-9. DOI
Jenč F.; Brandt B. A.; Špirko V.; Bludský O. Estimation of the ground-state potentials of alkali-metal diatomic-molecules with the use of the multiparameter generalized reduced-potential-curve method. Phys. Rev. A 1993, 48, 1319–1327. 10.1103/PhysRevA.48.1319. PubMed DOI
Soldán P.; Špirko V. Tuning ab initio data to scattering length: The a(3)Sigma(+) state of KRb. J. Chem. Phys. 2007, 127, 12110110.1063/1.2790004. PubMed DOI
Patkowski K.; Špirko V.; Szalewicz K. On the Elusive Twelfth Vibrational State of Beryllium Dimer. Science 2009, 326, 1382–1384. 10.1126/science.1181017. PubMed DOI
Mallada B.; Gallardo A.; Lamanec M.; de la Torre B.; Špirko V.; Hobza P.; Jelinek P. Real-space imaging of anisotropic charge of sigma-hole by means of Kelvin probe force microscopy. Science 2021, 374, 863–867. 10.1126/science.abk1479. PubMed DOI
Chan N.; Lin C.; Jacobs T.; Carpick R. W.; Egberts P. Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy. Beilstein J. Nanotechnol. 2020, 11, 729–739. 10.3762/bjnano.11.60. PubMed DOI PMC
Loukhovitski B. I.; Sharipov A. S.; Starik A. M. Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability. J. Phys. B 2016, 49, 12510210.1088/0953-4075/49/12/125102. DOI
Sileo R. N.; Cool T. A. Overtone emission-spectroscopy of HF and DF - vibrational matrix-elements and dipole-moment function. J. Chem. Phys. 1976, 65, 117–133. 10.1063/1.432808. DOI
Harrison J. F. Dipole and quadrupole moment functions of the hydrogen halides HF, HCl, HBr, and HI: A Hirshfeld interpretation. J. Chem. Phys. 2008, 128, 11432010.1063/1.2897445. PubMed DOI
Harrison J. F.Theoretical data for dipole and quadrupole moment functions of HF, HCl, and HBr. Private communication.
Ogilvie J. F. The electric dipole moment function of HF. J. Phys. B 1988, 21, 1663–1671. 10.1088/0953-4075/21/9/023. DOI
Coxon J. A.; Hajigeorgiou P. G. Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI. J. Quant. Spectrosc. Radiat. Transfer 2015, 151, 133–154. 10.1016/j.jqsrt.2014.08.028. DOI
Li G.; Gordon I. E.; Le Roy R. J.; Hajigeorgiou P. G.; Coxon J. A.; Bernath P. F.; Rothman L. S. Reference spectroscopic data for hydrogen halides. Part I: Construction and validation of the ro-vibrational dipole moment functions. J. Quant. Spectrosc. Radiat. Transfer 2013, 121, 78–90. 10.1016/j.jqsrt.2013.02.005. DOI
Piecuch P.; Špirko V.; Paldus J. Vibrational dependence of the dipole moment and radiative transition probabilities in the X-1 Sigma(+) state of HF: a linear-response coupled-cluster study. Mol. Phys. 1998, 94, 55–64. 10.1080/00268979809482294. DOI
Zemke W. T.; Stwalley W. C.; Langhoff S. R.; Valderrama G. L.; Berry M. J. Radiative transition-probabilities for all vibrational levels in the X1-SIGMA+ state of HF. J. Chem. Phys. 1991, 95, 7846–7853. 10.1063/1.461313. DOI
Buldakov M. A.; Cherepanov V. N. The semiempirical dipole moment funtions of the molecules HX (X = F, Cl, Br, I, O), CO, and NO. J. Phys. B 2004, 37, 3973–3986. 10.1088/0953-4075/37/19/015. DOI
Buldakov M. A.; Koryukina E. V.; Cherepanov V. N.; Kalugina Yu. N. Theoretical investigation into dipole-moment functions of HF, HCl, and HBr molecules at small internuclear separations. Russ. Phys. J. 2006, 49, 1230–1235. 10.1007/s11182-006-0249-8. DOI
Buldakov M. A.; Koryukina E. V.; Cherepanov V. N.; Kalugina Yu. N. Regularities in the behaviour of dipole moment functions of diatomic molecules at very small internuclear separations. Phys. Rev. A 2008, 78, 03251610.1103/PhysRevA.78.032516. DOI
Halkier A.; Klopper W.; Helgaker T.; Jørgensen P. Basis-set convergence of the molecular electric dipole moment. J. Chem. Phys. 1999, 111, 4424–4430. 10.1063/1.480036. DOI
Kahn K.; Kirtman B.; Noga J.; Ten-no S. Anharmonic vibrational analysis of water with traditional and explicitly correlated coupled cluster methods. J. Chem. Phys. 2010, 133, 07410610.1063/1.3464837. PubMed DOI
Kahn K.; Kirtman B.; Hagen A.; Noga J. Communication: Convergence of anharmonic infrared intensities of hydrogen fluoride in traditional and explicitly correlated coupled cluster calculations. J. Chem. Phys. 2011, 135, 13110310.1063/1.3647566. PubMed DOI
Hait D.; Head-Gordon M. How Accurate is Density Functional Theory at Predicting Dipole Moments?. J. Chem. Theory Comput. 2018, 14, 1969–1981. 10.1021/acs.jctc.7b01252. PubMed DOI
Chrayteh A.; Blondel A.; Loos P. F.; Jacquemin D. Mountaineering Strategy to Excited States: Highly Accurate Oscillator Strengths and Dipole Moments of Small Molecules. J. Chem. Theory Comput. 2021, 17, 416–438. 10.1021/acs.jctc.0c01111. PubMed DOI
Lykhin A. O.; Truhlar D. G.; Gagliardi L. Dipole Moment Calculations Using Multiconfiguration Pair-Density Functional Theory and Hybrid Multiconfiguration Pair-Density Functional Theory. J. Chem. Theory Comput. 2021, 17, 7586–7601. 10.1021/acs.jctc.1c00915. PubMed DOI
Watson J. K. G. Inversion of diatomic vibration-rotation expectation values. J. Mol. Spectrosc. 1979, 74, 319–321. 10.1016/0022-2852(79)90060-2. DOI
Sauer S. P. A.; Špirko V. Effective potential energy curves of the ground electronic state of CH+. J. Chem. Phys. 2013, 138, 02431510.1063/1.4774374. PubMed DOI
Augustovičová L. D.; Špirko V. Radial molecular property functions of CH in its ground electronic state. J. Quant. Spectrosc. Radiat. Transfer 2021, 272, 10780910.1016/j.jqsrt.2021.107809. DOI
Bielska K.; Kyuberis A.; Reed Z. D.; Li G.; Cygan A.; Ciuryło R.; Adkins E. M.; Lodi L.; Zobov N. F.; Ebert V.; Lisak D.; Hodges J. T.; Tennyson J.; Polyansky O. L. Subpromile Measurements and Calculations of CO (3–0) Overtone Line Intensities. Phys. Rev. Lett. 2022, 129, 04300210.1103/PhysRevLett.129.043002. PubMed DOI
Maroulis G. Electric multipole moment, dipole and quadrupole (hyper)polarizability derivatives for HF (X1Σ+. J. Mol. Struct.: THEOCHEM 2003, 633, 177–197. 10.1016/S0166-1280(03)00273-2. DOI
Vasilchenko S. S.; Lyulin O. M.; Perevalov V. I. High sensitivity absorption spectroscopy of hydrogen chloride near 770nm. J. Quant. Spectrosc. Radiat. Transfer 2023, 296, 10846010.1016/j.jqsrt.2022.108460. DOI
Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules
Three-Parameter Electric Dipole Moment Function for the CO Molecule