Reduced Radial Curves of Diatomic Molecules

. 2023 Oct 24 ; 19 (20) : 7324-7332. [epub] 20230929

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37774238

The prospect of using the concept of a universal reduced potential energy curve (RPC) for a broader class of radial molecular functions is explored by performing appropriate model calculations for the electric dipole moment functions of the hydrogen halides HF, HCl, and HBr. The reduced radial functions of the model systems, constructed from their best available theoretical approximants, coincide so closely that they can be used as few-parameter universal representations of functions available in the literature. Given the mathematical nature of the problem addressed here, the results are not limited to the functions studied but can be applied equally well to all radial molecular functions that have similar shapes, such as electric quadrupole moment and dipole polarizability functions.

Zobrazit více v PubMed

Born M.; Oppenheimer R. Quantum theory of molecules. Ann. Phys. 1927, 84, 0457–0484.

Buckingham A. D. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces. Adv. Chem. Phys. 1967, 12, 107–142. 10.1002/9780470143582.ch2. DOI

Brown J. M.; Colburn E. A.; Watson J. K. G.; Wayne F. D. Effective Hamiltonian for diatomic-molecules - Ab initio calculations of parameters of HCl+. J. Mol. Spectrosc. 1979, 74, 294–318.

Augustovičová L. D.; Špirko V. Morphing radial molecular property functions of hydroxyl. J. Quant. Spectrosc. Radiat. Transfer 2020, 254, 1072110.1016/j.jqsrt.2020.107211. DOI

Jenč F. The reduced potential curve (RPC) method and its applications. Int. Rev. Phys. Chem. 1996, 15, 467–563. 10.1080/01442359609353191. DOI

Hollebeek T.; Ho T. S.; Rabitz H. Constructing multidimensional molecular potential energy surfaces from ab initio data. Annu. Rev. Phys. Chem. 1999, 50, 537–570. 10.1146/annurev.physchem.50.1.537. PubMed DOI

Špirko V.; Li X.; Paldus J. Potential energy curve of N2 revisited. Collect. Czech. Chem. Commun. 2011, 76, 327–341. 10.1135/cccc2010151. DOI

Stine J. R.; Noid D. W. A semiclassical inversion procedure for the dipole-moment function for diatomic molecules. J. Chem. Phys. 1983, 78, 3647–3651. 10.1063/1.445193. DOI

Trischka J.; Salwen H. Dipole moment function of diatomic molecules. J. Chem. Phys. 1959, 31, 218–225. 10.1063/1.1730297. DOI

Ferguson A. F.; Parkinson D. The hydroxyl bands in the nightglow. Planet. Space Sci. 1963, 11, 149–159. 10.1016/0032-0633(63)90136-3. DOI

Špirko V.; Blabla J. Nuclear-quadrupole coupling functions of the 1-SIGMA-G+ and 3-PI-OU+ states of molecular-iodine. J. Mol. Spectrosc. 1988, 129, 59–71.

Henderson R. D. E.; Shayesteh A.; Tao J.; Haugen C. C.; Bernath P. F.; Le Roy R. J. Accurate Analytic Potential and Born-Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis. J. Phys. Chem. A 2013, 117, 13373–13387. 10.1021/jp406680r. PubMed DOI

Yurchenko S. N.; Lodi L.; Tennyson J.; Stolyarov A. V. Duo: A general program for calculating spectra of diatomic molecules. Comput. Phys. Commun. 2016, 202, 262–275. 10.1016/j.cpc.2015.12.021. DOI

Medvedev E. S.; Meshkov V. V.; Stolyarov A. V.; Ushakov V. G.; Gordon I. E. Impact of the dipole-moment representation on the intensity of high overtones. J. Mol. Spectrosc. 2016, 330, 36–42. 10.1016/j.jms.2016.06.013. DOI

Ushakov V. G.; Meshkov V. V.; Ermilov A. Yu.; Stolyarov A. V.; Gordon I. E.; Medvedev E. S. Long-range potentials and dipole moments of the CO electronic states converging to the ground dissociation limit. Phys. Chem. Chem. Phys. 2020, 22, 12058–12067. 10.1039/D0CP01696A. PubMed DOI

Medvedev E. S.; Ushakov V. G. Effect of the analytical form of the dipole-moment function on the rotational intensity distributions in the high-overtone vibrational bands of carbon monoxide. J. Quant. Spectrosc. Radiat. Transfer 2021, 272, 10780310.1016/j.jqsrt.2021.107803. DOI

Meshkov V. V.; Ermilov A. Yu.; Stolyarov A. V.; Medvedev E. S.; Ushakov V. G.; Gordon I. E. Semi-empirical dipole moment of carbon monoxide and line lists for all its isotopologues revisited. J. Quant. Spectrosc. Radiat. Transfer 2022, 280, 10809010.1016/j.jqsrt.2022.108090. DOI

Medvedev E. S.; Ushakov V. G. Irregular semi-empirical dipole-moment function for carbon monoxide and line lists for all its isotopologues verified for extremely high overtone transitions. J. Quant. Spectrosc. Radiat. Transfer 2022, 288, 10825510.1016/j.jqsrt.2022.108255. DOI

Araújo J. P.; Ballester M. Y. A comparative review of 50 analytical representation of potential energy interaction for diatomic systems: 100 years of history. Int. J. Quantum Chem. 2021, 121, e2680810.1002/qua.26808. DOI

Janzen A. R.; Aziz R. A. An accurate potential energy curve for helium based on ab initio calculations. J. Chem. Phys. 1997, 107, 914–919. 10.1063/1.474444. DOI

Špirko V.; Sauer S. P. A.; Szalewicz K. Relation between properties of long-range diatomic bound states. Phys. Rev. A 2013, 87, 01251010.1103/PhysRevA.87.012510. DOI

Jenč F. The reduced potential curve method for diatomic-molecules and its applications. Adv. At. Mol. Phys. 1983, 19, 265–307. 10.1016/S0065-2199(08)60255-9. DOI

Jenč F.; Brandt B. A.; Špirko V.; Bludský O. Estimation of the ground-state potentials of alkali-metal diatomic-molecules with the use of the multiparameter generalized reduced-potential-curve method. Phys. Rev. A 1993, 48, 1319–1327. 10.1103/PhysRevA.48.1319. PubMed DOI

Soldán P.; Špirko V. Tuning ab initio data to scattering length: The a(3)Sigma(+) state of KRb. J. Chem. Phys. 2007, 127, 12110110.1063/1.2790004. PubMed DOI

Patkowski K.; Špirko V.; Szalewicz K. On the Elusive Twelfth Vibrational State of Beryllium Dimer. Science 2009, 326, 1382–1384. 10.1126/science.1181017. PubMed DOI

Mallada B.; Gallardo A.; Lamanec M.; de la Torre B.; Špirko V.; Hobza P.; Jelinek P. Real-space imaging of anisotropic charge of sigma-hole by means of Kelvin probe force microscopy. Science 2021, 374, 863–867. 10.1126/science.abk1479. PubMed DOI

Chan N.; Lin C.; Jacobs T.; Carpick R. W.; Egberts P. Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy. Beilstein J. Nanotechnol. 2020, 11, 729–739. 10.3762/bjnano.11.60. PubMed DOI PMC

Loukhovitski B. I.; Sharipov A. S.; Starik A. M. Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability. J. Phys. B 2016, 49, 12510210.1088/0953-4075/49/12/125102. DOI

Sileo R. N.; Cool T. A. Overtone emission-spectroscopy of HF and DF - vibrational matrix-elements and dipole-moment function. J. Chem. Phys. 1976, 65, 117–133. 10.1063/1.432808. DOI

Harrison J. F. Dipole and quadrupole moment functions of the hydrogen halides HF, HCl, HBr, and HI: A Hirshfeld interpretation. J. Chem. Phys. 2008, 128, 11432010.1063/1.2897445. PubMed DOI

Harrison J. F.Theoretical data for dipole and quadrupole moment functions of HF, HCl, and HBr. Private communication.

Ogilvie J. F. The electric dipole moment function of HF. J. Phys. B 1988, 21, 1663–1671. 10.1088/0953-4075/21/9/023. DOI

Coxon J. A.; Hajigeorgiou P. G. Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI. J. Quant. Spectrosc. Radiat. Transfer 2015, 151, 133–154. 10.1016/j.jqsrt.2014.08.028. DOI

Li G.; Gordon I. E.; Le Roy R. J.; Hajigeorgiou P. G.; Coxon J. A.; Bernath P. F.; Rothman L. S. Reference spectroscopic data for hydrogen halides. Part I: Construction and validation of the ro-vibrational dipole moment functions. J. Quant. Spectrosc. Radiat. Transfer 2013, 121, 78–90. 10.1016/j.jqsrt.2013.02.005. DOI

Piecuch P.; Špirko V.; Paldus J. Vibrational dependence of the dipole moment and radiative transition probabilities in the X-1 Sigma(+) state of HF: a linear-response coupled-cluster study. Mol. Phys. 1998, 94, 55–64. 10.1080/00268979809482294. DOI

Zemke W. T.; Stwalley W. C.; Langhoff S. R.; Valderrama G. L.; Berry M. J. Radiative transition-probabilities for all vibrational levels in the X1-SIGMA+ state of HF. J. Chem. Phys. 1991, 95, 7846–7853. 10.1063/1.461313. DOI

Buldakov M. A.; Cherepanov V. N. The semiempirical dipole moment funtions of the molecules HX (X = F, Cl, Br, I, O), CO, and NO. J. Phys. B 2004, 37, 3973–3986. 10.1088/0953-4075/37/19/015. DOI

Buldakov M. A.; Koryukina E. V.; Cherepanov V. N.; Kalugina Yu. N. Theoretical investigation into dipole-moment functions of HF, HCl, and HBr molecules at small internuclear separations. Russ. Phys. J. 2006, 49, 1230–1235. 10.1007/s11182-006-0249-8. DOI

Buldakov M. A.; Koryukina E. V.; Cherepanov V. N.; Kalugina Yu. N. Regularities in the behaviour of dipole moment functions of diatomic molecules at very small internuclear separations. Phys. Rev. A 2008, 78, 03251610.1103/PhysRevA.78.032516. DOI

Halkier A.; Klopper W.; Helgaker T.; Jørgensen P. Basis-set convergence of the molecular electric dipole moment. J. Chem. Phys. 1999, 111, 4424–4430. 10.1063/1.480036. DOI

Kahn K.; Kirtman B.; Noga J.; Ten-no S. Anharmonic vibrational analysis of water with traditional and explicitly correlated coupled cluster methods. J. Chem. Phys. 2010, 133, 07410610.1063/1.3464837. PubMed DOI

Kahn K.; Kirtman B.; Hagen A.; Noga J. Communication: Convergence of anharmonic infrared intensities of hydrogen fluoride in traditional and explicitly correlated coupled cluster calculations. J. Chem. Phys. 2011, 135, 13110310.1063/1.3647566. PubMed DOI

Hait D.; Head-Gordon M. How Accurate is Density Functional Theory at Predicting Dipole Moments?. J. Chem. Theory Comput. 2018, 14, 1969–1981. 10.1021/acs.jctc.7b01252. PubMed DOI

Chrayteh A.; Blondel A.; Loos P. F.; Jacquemin D. Mountaineering Strategy to Excited States: Highly Accurate Oscillator Strengths and Dipole Moments of Small Molecules. J. Chem. Theory Comput. 2021, 17, 416–438. 10.1021/acs.jctc.0c01111. PubMed DOI

Lykhin A. O.; Truhlar D. G.; Gagliardi L. Dipole Moment Calculations Using Multiconfiguration Pair-Density Functional Theory and Hybrid Multiconfiguration Pair-Density Functional Theory. J. Chem. Theory Comput. 2021, 17, 7586–7601. 10.1021/acs.jctc.1c00915. PubMed DOI

Watson J. K. G. Inversion of diatomic vibration-rotation expectation values. J. Mol. Spectrosc. 1979, 74, 319–321. 10.1016/0022-2852(79)90060-2. DOI

Sauer S. P. A.; Špirko V. Effective potential energy curves of the ground electronic state of CH+. J. Chem. Phys. 2013, 138, 02431510.1063/1.4774374. PubMed DOI

Augustovičová L. D.; Špirko V. Radial molecular property functions of CH in its ground electronic state. J. Quant. Spectrosc. Radiat. Transfer 2021, 272, 10780910.1016/j.jqsrt.2021.107809. DOI

Bielska K.; Kyuberis A.; Reed Z. D.; Li G.; Cygan A.; Ciuryło R.; Adkins E. M.; Lodi L.; Zobov N. F.; Ebert V.; Lisak D.; Hodges J. T.; Tennyson J.; Polyansky O. L. Subpromile Measurements and Calculations of CO (3–0) Overtone Line Intensities. Phys. Rev. Lett. 2022, 129, 04300210.1103/PhysRevLett.129.043002. PubMed DOI

Maroulis G. Electric multipole moment, dipole and quadrupole (hyper)polarizability derivatives for HF (X1Σ+. J. Mol. Struct.: THEOCHEM 2003, 633, 177–197. 10.1016/S0166-1280(03)00273-2. DOI

Vasilchenko S. S.; Lyulin O. M.; Perevalov V. I. High sensitivity absorption spectroscopy of hydrogen chloride near 770nm. J. Quant. Spectrosc. Radiat. Transfer 2023, 296, 10846010.1016/j.jqsrt.2022.108460. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules

. 2024 Dec 24 ; 20 (24) : 11005-11012. [epub] 20241210

Three-Parameter Electric Dipole Moment Function for the CO Molecule

. 2024 Jun 11 ; 20 (11) : 4711-4717. [epub] 20240522

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...