Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39659033
PubMed Central
PMC11672666
DOI
10.1021/acs.jctc.4c01410
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The prospect of constructing global electric quadrupole moment functions (EQMFs) of diatomic molecules by morphing their theoretical approximants within the framework of the reduced radial curve (RRC) approach is explored by performing model calculations for the ground electronic states of H2 and HF. The reduced quadrupole moment curves probed, constructed for a set of differently accurate theoretical EQMFs, coincide with their best many-parameter analytic counterparts so closely that they can be used as their accurate few-parameter representations. No other such functional representation is available in the literature.
Zobrazit více v PubMed
Campargue A.; Kassi S.; Yachmenev A.; Kyuberis A. A.; Kupper J.; Yurchenko S. N. Observation of electric-quadrupole infrared transitions in water vapor. Phys. Rev. Res. 2020, 2, 023091.10.1103/PhysRevResearch.2.023091. DOI
Somogyi W.; Yurchenko S. N.; Yachmenev A. Calculation of electric quadrupole linestrengths for diatomic molecules: Application to the H2, CO, HF, and O2 molecules. J. Chem. Phys. 2021, 155 (21), 214303.10.1063/5.0063256. PubMed DOI
Puchalski M.; Komasa J.; Pachucki K. Hyperfine Structure of the First Rotational Level in H2, D2, and HD Molecules and the Deuteron Quadrupole Moment. Phys. Rev. Lett. 2020, 125, 253001.10.1103/PhysRevLett.125.253001. PubMed DOI
Ubachs W.; Koelemeij J. C. J.; Eikema K. S. E.; Salumbides E. J. Physics beyond the Standard Model from hydrogen spectroscopy. J. Mol. Spectrosc. 2016, 320, 1–12. 10.1016/j.jms.2015.12.003. DOI
Gomez F. M.; Hargreaves R. J.; Gordon I. E. A HITRAN-formatted UV line list of S2-containing transitions involving X3Σg– B3Σu–, and B”3Πu electronic states. Mon. Not. R. Astron. Soc. 2024, 528, 3823–3832. 10.1093/mnras/stae246. DOI
Campargue A.; Kassi S.; Pachucki K.; Komasa J. The absorption spectrum of H2: CRDS measurements of the (2–0) band, review of the literature data and accurate ab initio line list up to 35000 cm–1. Phys. Chem. Chem. Phys. 2012, 14, 802–815. 10.1039/C1CP22912E. PubMed DOI
Ushakov V. G.; Balashev S. A.; Medvedev E. S. Analysis of the calculated X-X ro-vibrational transition intensities in molecular hydrogen. J. Mol. Spectrosc. 2024, 399, 111863.10.1016/j.jms.2023.111863. DOI
Medvedev E. S. Towards understanding the nature of the intensities of overtone vibrational transitions. J. Chem. Phys. 2012, 137, 174307.10.1063/1.4761930. PubMed DOI
Medvedev E. S.; Ushakov V. G. Irregular semi-empirical dipole-moment function for carbon monoxide and line lists for all its isotopologues verified for extremely high overtone transitions. J. Quant. Spectrosc. Radiat. Transfer 2022, 288, 108255.10.1016/j.jqsrt.2022.108255. DOI
Špirko V. Reduced Radial Curves of Diatomic Molecules. J. Chem. Theory Comput. 2023, 19, 7324–7332. 10.1021/acs.jctc.3c00622. PubMed DOI PMC
Špirko V. Three-Parameter Electric Dipole Moment Function for the CO Molecule. J. Chem. Theory Comput. 2024, 20, 4711–4717. 10.1021/acs.jctc.4c00098. PubMed DOI PMC
Jenč F. The reduced potential curve method for diatomic-molecules and its applications. Adv. At. Mol. Phys. 1983, 19, 265–307. 10.1016/S0065-2199(08)60255-9. DOI
Jen F. Generalized reduced-potential curve method and its applications. Phys. Rev. A 1990, 42, 403–416. 10.1103/physreva.42.403. PubMed DOI
Jenč F.; Brandt B. A.; Špirko V.; Bludský O. Estimation of the ground-state potentials of alkali-metal diatomic-molecules with the use of the multiparameter generalized reduced-potential-curve method. Phys. Rev. A 1993, 48, 1319–1327. 10.1103/PhysRevA.48.1319. PubMed DOI
Komasa J.; Puchalski M.; Czachorowski P.; Łach G.; Pachucki K. Rovibrational energy levels of the hydrogen molecule through nonadiabatic perturbation theory. Phys. Rev. A 2019, 100, 032519.10.1103/PhysRevA.100.032519. DOI
Wolniewicz L.; Simbotin I.; Dalgarno A. Quadrupole transition probabilities for the excited rovibrational states of H2. Astrophys. J., Suppl. Ser. 1998, 115, 293–313. 10.1086/313091. DOI
Hu S.-M.; Pan H.; Cheng C.-F.; Sun Y. R.; Li X.-F.; Wang J.; Campargue A.; Liu A.-W. The v = 3 ← 0S(0) – S(3) Electric Quadrupole Transitions of H2 Near of 0.8 μm. Astrophys. J. 2012, 749 (1), 76.10.1088/0004-637x/749/1/76. DOI
Kassi S.; Campargue A. Electric quadrupole transitions and collision-induced absorption in the region of the first overtone band of H2 near 1.25 μm. J. Mol. Spectrosc. 2014, 300, 55–59. 10.1016/j.jms.2014.03.022. DOI
Tan Y.; Wang J.; Cheng C.-F.; Zhao X.-Q.; Liu A.-W.; Hu S.-M. Cavity ring-downspectroscopy of the electric quadrupole transitions of H2 in the 784–852 nm region. J. Mol. Spectrosc. 2014, 300, 60–64. 10.1016/j.jms.2014.03.010. DOI
Fleurbaey H.; Koroleva A. O.; Kassi S.; Campargue A. The high-accuracy spectroscopy of H2 rovibrational transitions in the (2–0) band near 1.2 μm. Phys. Chem. Chem. Phys. 2023, 25 (21), 14749–14756. 10.1039/d3cp01136d. PubMed DOI
Mondelain D.; Casson L. B. d.; Fleurbaey H.; Kassi S.; Campargue A. Accurate absolute frequency measurement of the S(2) transition in the fundamental band of H2 near 2.03 μm. Phys. Chem. Chem. Phys. 2023, 25, 22662–22668. 10.1039/d3cp03187j. PubMed DOI
Kol/os W.; Wolniewicz L. Potential-Energy Curves for the X1Σg+, b3Σu+, and C1Πu States of the Hydrogen Molecule. J. Chem. Phys. 1965, 43, 2429–2441. 10.1063/1.1697142. DOI
Truhlar D. G. Vibrational Matrix Elements of the Quadrupole Moment Functions of H2, N2 and CO. Int. J. Quantum Chem. 1972, 6, 975–988. 10.1002/qua.560060515. DOI
Poll J. D.; Wolniewicz L. The quadrupole moment of the H2 molecule. J. Chem. Phys. 1978, 68, 3053–3058. 10.1063/1.436171. DOI
Miliordos E.; Hunt K. L. C. Dependence of the multipole moments, static polarizabilities, and static hyperpolarizabilities of the hydrogen molecule on the H–H separation in the ground singlet state. J. Chem. Phys. 2018, 149, 234103.10.1063/1.5066308. PubMed DOI
Jóźwiak H.; Cybulski H.; Wcisło P. Hyperfine components of all rovibrational quadrupole transitions in the H2 and D2 molecules. J. Quant. Spectrosc. Radiat. Transfer 2020, 253, 107186.10.1016/j.jqsrt.2020.107186. DOI
Boyd J. P.; Xu F. Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation. Appl. Math. Comput. 2009, 210, 158–168. 10.1016/j.amc.2008.12.087. DOI
de Leluw F.; Dymanus A. Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy. J. Mol. Spectrosc. 1973, 48, 427–445. 10.1016/0022-2852(73)90107-0. DOI
Maroulis G. Electric multipole moment, dipole and quadrupole (hyper)polarizability derivatives for HF (X1Σ+). J. Mol. Struct.:THEOCHEM 2003, 633, 177–197. 10.1016/S0166-1280(03)00273-2. DOI
Harrison J. F. Dipole and quadrupole moment functions of the hydrogen halides HF, HCl, HBr, and HI: A Hirshfeld interpretation. J. Chem. Phys. 2008, 128, 114320.10.1063/1.2897445. PubMed DOI
Harrison J. F.Theoretical Data for Dipole and Quadrupole Moment Functions of HF, HCl, and HBr, Private Communication.
Piecuch P.; Kondo A. E.; Špirko V.; Paldus J. Molecular quadrupole moment functions of HF and N2. Ab initio linear-response coupled-cluster results. J. Chem. Phys. 1996, 104, 4699–4715. 10.1063/1.471164. DOI