Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules

. 2024 Dec 24 ; 20 (24) : 11005-11012. [epub] 20241210

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39659033

The prospect of constructing global electric quadrupole moment functions (EQMFs) of diatomic molecules by morphing their theoretical approximants within the framework of the reduced radial curve (RRC) approach is explored by performing model calculations for the ground electronic states of H2 and HF. The reduced quadrupole moment curves probed, constructed for a set of differently accurate theoretical EQMFs, coincide with their best many-parameter analytic counterparts so closely that they can be used as their accurate few-parameter representations. No other such functional representation is available in the literature.

Zobrazit více v PubMed

Campargue A.; Kassi S.; Yachmenev A.; Kyuberis A. A.; Kupper J.; Yurchenko S. N. Observation of electric-quadrupole infrared transitions in water vapor. Phys. Rev. Res. 2020, 2, 023091.10.1103/PhysRevResearch.2.023091. DOI

Somogyi W.; Yurchenko S. N.; Yachmenev A. Calculation of electric quadrupole linestrengths for diatomic molecules: Application to the H2, CO, HF, and O2 molecules. J. Chem. Phys. 2021, 155 (21), 214303.10.1063/5.0063256. PubMed DOI

Puchalski M.; Komasa J.; Pachucki K. Hyperfine Structure of the First Rotational Level in H2, D2, and HD Molecules and the Deuteron Quadrupole Moment. Phys. Rev. Lett. 2020, 125, 253001.10.1103/PhysRevLett.125.253001. PubMed DOI

Ubachs W.; Koelemeij J. C. J.; Eikema K. S. E.; Salumbides E. J. Physics beyond the Standard Model from hydrogen spectroscopy. J. Mol. Spectrosc. 2016, 320, 1–12. 10.1016/j.jms.2015.12.003. DOI

Gomez F. M.; Hargreaves R. J.; Gordon I. E. A HITRAN-formatted UV line list of S2-containing transitions involving X3Σg– B3Σu–, and B”3Πu electronic states. Mon. Not. R. Astron. Soc. 2024, 528, 3823–3832. 10.1093/mnras/stae246. DOI

Campargue A.; Kassi S.; Pachucki K.; Komasa J. The absorption spectrum of H2: CRDS measurements of the (2–0) band, review of the literature data and accurate ab initio line list up to 35000 cm–1. Phys. Chem. Chem. Phys. 2012, 14, 802–815. 10.1039/C1CP22912E. PubMed DOI

Ushakov V. G.; Balashev S. A.; Medvedev E. S. Analysis of the calculated X-X ro-vibrational transition intensities in molecular hydrogen. J. Mol. Spectrosc. 2024, 399, 111863.10.1016/j.jms.2023.111863. DOI

Medvedev E. S. Towards understanding the nature of the intensities of overtone vibrational transitions. J. Chem. Phys. 2012, 137, 174307.10.1063/1.4761930. PubMed DOI

Medvedev E. S.; Ushakov V. G. Irregular semi-empirical dipole-moment function for carbon monoxide and line lists for all its isotopologues verified for extremely high overtone transitions. J. Quant. Spectrosc. Radiat. Transfer 2022, 288, 108255.10.1016/j.jqsrt.2022.108255. DOI

Špirko V. Reduced Radial Curves of Diatomic Molecules. J. Chem. Theory Comput. 2023, 19, 7324–7332. 10.1021/acs.jctc.3c00622. PubMed DOI PMC

Špirko V. Three-Parameter Electric Dipole Moment Function for the CO Molecule. J. Chem. Theory Comput. 2024, 20, 4711–4717. 10.1021/acs.jctc.4c00098. PubMed DOI PMC

Jenč F. The reduced potential curve method for diatomic-molecules and its applications. Adv. At. Mol. Phys. 1983, 19, 265–307. 10.1016/S0065-2199(08)60255-9. DOI

Jen F. Generalized reduced-potential curve method and its applications. Phys. Rev. A 1990, 42, 403–416. 10.1103/physreva.42.403. PubMed DOI

Jenč F.; Brandt B. A.; Špirko V.; Bludský O. Estimation of the ground-state potentials of alkali-metal diatomic-molecules with the use of the multiparameter generalized reduced-potential-curve method. Phys. Rev. A 1993, 48, 1319–1327. 10.1103/PhysRevA.48.1319. PubMed DOI

Komasa J.; Puchalski M.; Czachorowski P.; Łach G.; Pachucki K. Rovibrational energy levels of the hydrogen molecule through nonadiabatic perturbation theory. Phys. Rev. A 2019, 100, 032519.10.1103/PhysRevA.100.032519. DOI

Wolniewicz L.; Simbotin I.; Dalgarno A. Quadrupole transition probabilities for the excited rovibrational states of H2. Astrophys. J., Suppl. Ser. 1998, 115, 293–313. 10.1086/313091. DOI

Hu S.-M.; Pan H.; Cheng C.-F.; Sun Y. R.; Li X.-F.; Wang J.; Campargue A.; Liu A.-W. The v = 3 ← 0S(0) – S(3) Electric Quadrupole Transitions of H2 Near of 0.8 μm. Astrophys. J. 2012, 749 (1), 76.10.1088/0004-637x/749/1/76. DOI

Kassi S.; Campargue A. Electric quadrupole transitions and collision-induced absorption in the region of the first overtone band of H2 near 1.25 μm. J. Mol. Spectrosc. 2014, 300, 55–59. 10.1016/j.jms.2014.03.022. DOI

Tan Y.; Wang J.; Cheng C.-F.; Zhao X.-Q.; Liu A.-W.; Hu S.-M. Cavity ring-downspectroscopy of the electric quadrupole transitions of H2 in the 784–852 nm region. J. Mol. Spectrosc. 2014, 300, 60–64. 10.1016/j.jms.2014.03.010. DOI

Fleurbaey H.; Koroleva A. O.; Kassi S.; Campargue A. The high-accuracy spectroscopy of H2 rovibrational transitions in the (2–0) band near 1.2 μm. Phys. Chem. Chem. Phys. 2023, 25 (21), 14749–14756. 10.1039/d3cp01136d. PubMed DOI

Mondelain D.; Casson L. B. d.; Fleurbaey H.; Kassi S.; Campargue A. Accurate absolute frequency measurement of the S(2) transition in the fundamental band of H2 near 2.03 μm. Phys. Chem. Chem. Phys. 2023, 25, 22662–22668. 10.1039/d3cp03187j. PubMed DOI

Kol/os W.; Wolniewicz L. Potential-Energy Curves for the X1Σg+, b3Σu+, and C1Πu States of the Hydrogen Molecule. J. Chem. Phys. 1965, 43, 2429–2441. 10.1063/1.1697142. DOI

Truhlar D. G. Vibrational Matrix Elements of the Quadrupole Moment Functions of H2, N2 and CO. Int. J. Quantum Chem. 1972, 6, 975–988. 10.1002/qua.560060515. DOI

Poll J. D.; Wolniewicz L. The quadrupole moment of the H2 molecule. J. Chem. Phys. 1978, 68, 3053–3058. 10.1063/1.436171. DOI

Miliordos E.; Hunt K. L. C. Dependence of the multipole moments, static polarizabilities, and static hyperpolarizabilities of the hydrogen molecule on the H–H separation in the ground singlet state. J. Chem. Phys. 2018, 149, 234103.10.1063/1.5066308. PubMed DOI

Jóźwiak H.; Cybulski H.; Wcisło P. Hyperfine components of all rovibrational quadrupole transitions in the H2 and D2 molecules. J. Quant. Spectrosc. Radiat. Transfer 2020, 253, 107186.10.1016/j.jqsrt.2020.107186. DOI

Boyd J. P.; Xu F. Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation. Appl. Math. Comput. 2009, 210, 158–168. 10.1016/j.amc.2008.12.087. DOI

de Leluw F.; Dymanus A. Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy. J. Mol. Spectrosc. 1973, 48, 427–445. 10.1016/0022-2852(73)90107-0. DOI

Maroulis G. Electric multipole moment, dipole and quadrupole (hyper)polarizability derivatives for HF (X1Σ+). J. Mol. Struct.:THEOCHEM 2003, 633, 177–197. 10.1016/S0166-1280(03)00273-2. DOI

Harrison J. F. Dipole and quadrupole moment functions of the hydrogen halides HF, HCl, HBr, and HI: A Hirshfeld interpretation. J. Chem. Phys. 2008, 128, 114320.10.1063/1.2897445. PubMed DOI

Harrison J. F.Theoretical Data for Dipole and Quadrupole Moment Functions of HF, HCl, and HBr, Private Communication.

Piecuch P.; Kondo A. E.; Špirko V.; Paldus J. Molecular quadrupole moment functions of HF and N2. Ab initio linear-response coupled-cluster results. J. Chem. Phys. 1996, 104, 4699–4715. 10.1063/1.471164. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...