Efficient magnetic switching in a correlated spin glass

. 2023 Oct 02 ; 14 (1) : 6127. [epub] 20231002

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37779120

Grantová podpora
I 4493 Austrian Science Fund FWF - Austria
P 30960 Austrian Science Fund FWF - Austria

Odkazy

PubMed 37779120
PubMed Central PMC10543544
DOI 10.1038/s41467-023-41718-4
PII: 10.1038/s41467-023-41718-4
Knihovny.cz E-zdroje

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

Zobrazit více v PubMed

Kossut, J. & Gaj, J. A. (eds.) Introduction to the Physics of Diluted Magnetic Semiconductors (Springer-Verlag Berlin Heidelberg, 2011).

Jungwirth T, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 2014;86:855–896.

Dietl T, Ohno H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 2014;86:187–251.

Picozzi S. Ferroelectric rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2014;2:10.

Zutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 2004;76:323–410.

Krempaský J, et al. Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Ge1−xMnxTe. Nat. Commun. 2016;7:13071. PubMed PMC

Yoshimi R, et al. Current-driven magnetization switching in ferromagnetic bulk Rashba semiconductor (Ge,Mn)Te. Sci. Adv. 2018;4:eaat9989. PubMed PMC

Pawley GS, Cochran W, Cowley RA, Dolling G. Diatomic ferroelectrics. Phys. Rev. Lett. 1966;17:753–755.

Krempaský J, et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B. 2016;94:205111.

Krempaský J, et al. Operando imaging of all-electric spin texture manipulation in ferroelectric and multiferroic rashba semiconductors. Phys. Rev. X. 2018;8:021067.

Krempaský J, et al. Fully spin-polarized bulk states in ferroelectric GeTe. Phys. Rev. Res. 2020;2:013107.

Przybylińska H, et al. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1-xMnxTe semiconductor. Phys. Rev. Lett. 2014;112:047202. PubMed

Kriegner D, et al. Ferroelectric phase transitions in multiferroic Ge1−xMnxTe driven by local lattice distortions. Phys. Rev. B. 2016;94:054112. PubMed PMC

Krempaský J, et al. Spin-resolved electronic structure of ferroelectric GeTe and multiferroic (Ge,Mn)Te. J. Phys. Chem. Solids. 2019;128:237–244.

Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous hall effect. Rev. Mod. Phys. 2010;82:1539–1592.

Fukuma Y, et al. X-ray magnetic circular dichroism of ferromagnetic semiconductor ge(1-x)mnxte. AIP Conf. Proc. 2005;772:349–350.

Sato H, et al. Mn 3d states in ferromagnetic semiconductor ge1-xmnxTe investigated by mn 2p-3d soft x-ray magnetic circular dichroism spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2005;144-147:727–729.

Fukuma Y, et al. Local environment of mn atoms in iv-vi ferromagnetic semiconductor ge1-xmnxTe. J. Appl. Phys. 2006;99:08D510.

Fukuma Y, et al. Carrier-induced ferromagnetism in ge0.92Mn0.08Te epilayers with a curie temperature up to 190k. Appl. Phys. Lett. 2009;94:269901.

Fukushima T, et al. First principles studies of GeTe based dilute magnetic semiconductors. J. Condens. Matter Phys. 2014;27:015501. PubMed

Yoshimi R, et al. Nonreciprocal electrical transport in the multiferroic semiconductor (Ge,Mn)Te. Phys. Rev. B. 2022;106:115202.

Brey L. Magnetic skyrmionic polarons. Nano Lett. 2017;17:7358–7363. PubMed

Galazka RR, Nagata S, Keesom PH. Paramagnetic spin-glass antiferromagnetic phase transitions in Cd1−xMnxTe from specific heat and magnetic susceptibility measurements. Phys. Rev. B. 1980;22:3344–3355.

Natterer FD, Donati F, Patthey F, Brune H. Thermal and magnetic-field stability of holmium single-atom magnets. Phys. Rev. Lett. 2018;121:027201. PubMed

Hermenau J, et al. Stabilizing spin systems via symmetrically tailored RKKY interactions. Nat. Commun. 2019;10:2565. PubMed PMC

Freeman AA, et al. Depth dependence of the mn valence and mn-mn coupling in (Ga,Mn)N. Phys. Rev. B. 2007;76:081201.

van der Laan G, Figueroa AI. X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 2014;277-278:95–129.

Edmonds K, van der Laan G, Panaccione G. Electronic structure of (Ga,Mn)As as seen by synchrotron radiation. Semiconduc. Sci. Technol. 2015;30:043001.

Antonov V, Shpak A, Bekenov L, Germash L, Yaresko A. Electronic structure and x-ray magnetic circular dichroism in (Ge,Mn)Te diluted magnetic semiconductors. Condens. Matter Phys. 2010;13:1–8.

Kriener M, et al. Heat-treatment-induced switching of magnetic states in the doped polar semiconductor Ge1−xMnxTe. Sci. Rep. 2016;6:25748. PubMed PMC

Trygg J, Johansson B, Eriksson O, Wills JM. Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. Phys. Rev. Lett. 1995;75:2871–2874. PubMed

Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998;70:223–287.

Song H, Huang S, Liu X. Stochastic resonance in two-frequency signal systems. Int. J. Mod. Phys. B. 2016;30:1650113.

von Baltz R, Kraut W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B. 1981;23:5590–5596.

Gong S-J, Zheng F, Rappe AM. Phonon influence on bulk photovoltaic effect in the ferroelectric semiconductor GeTe. Phys. Rev. Lett. 2018;121:017402. PubMed

Kriegner D, et al. Ferroelectric self-poling in GeTe films and crystals. Crystals. 2019;9:335.

Orlova N, Timonina A, Kolesnikov N, Deviatov E. Dynamic negative capacitance response in GeTe Rashba ferroelectric. Phys. B: Condens. Matter. 2022;647:414358.

Hoffmann M, Slesazeck S, Mikolajick T. Progress and future prospects of negative capacitance electronics: a materials perspective. APL Mater. 2021;9:020902.

Grigorenko A, Nikitin P. Stochastic resonance in a bistable magnetic system. IEEE Trans. Magn. 1995;31:2491–2493.

Krempaský J, et al. Synchronized monochromator and insertion device energy scans at SLS. AIP Conf. Proc. 2010;1234:705–708.

Thole BT, Carra P, Sette F, van der Laan G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992;68:1943–1946. PubMed

Carra P, Thole BT, Altarelli M, Wang X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993;70:694–697. PubMed

Yu X, et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat. Phys. 2018;14:832–836.

Vincent, E. & Dupuis, V. Spin Glasses: Experimental Signatures and Salient Outcomes (Springer International Publishing, 2018).

Verlhac B, et al. Thermally induced magnetic order from glassiness in elemental neodymium. Nat. Phys. 2022;18:905–911.

Ochoa H, Zarzuela R, Tserkovnyak Y. Spin hydrodynamics in amorphous magnets. Phys. Rev. B. 2018;98:054424.

Maniv E, et al. Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass. Sci. Adv. 2021;7:eabd8452. PubMed PMC

Piamonteze C, et al. X-Treme beamline at SLS: X-ray magnetic circular and linear dichroism at high field and low temperature. J. Synchrotron Radiat. 2012;19:661–674. PubMed

Prokscha T, et al. The new μE4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nuc. Inst. Phys. A. 2008;595:317–331.

Saadaoui H, et al. Zero-field spin depolarization of low-energy muons in ferromagnetic nickel and silver metal. Phys. Procedia. 2012;30:164–167.

Suter A, Wojek B. Musrfit: A free platform-independent framework for usr data analysis. Phys. Procedia. 2012;30:69–73.

Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the KKR-Green’s function method–recent developments and applications. Rep. Prog. Phys. 2011;74:096501.

Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211.

Soven P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 1967;156:809–813.

Taylor DW. Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 1967;156:1017–1029.

Johnston W, Sestrich D. The MnTe-GeTe phase diagram. J. Inorg. Nucl. Chem. 1961;19:229–236.

Goering E. X-ray magnetic circular dichroism sum rule correction for the light transition metals. Philos. Mag. 2005;85:2895–2911.

Liechtenstein A, Katsnelson M, Antropov V, Gubanov V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987;67:65–74.

Belhadji B, et al. Trends of exchange interactions in dilute magnetic semiconductors. J. Phys. Condens. Matter Phys. 2007;19:436227.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...