Timed Sequence Task: A New Paradigm to Study Motor Learning and Flexibility in Mice

. 2023 Oct ; 10 (10) : . [epub] 20231004

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37793806
Odkazy

PubMed 37793806
PubMed Central PMC10552695
DOI 10.1523/eneuro.0145-23.2023
PII: 10/10/ENEURO.0145-23.2023
Knihovny.cz E-zdroje

Motor learning and flexibility allow animals to perform routine actions efficiently while keeping them flexible. A number of paradigms are used to test cognitive flexibility, but not many of them focus specifically on the learning of complex motor sequences and their flexibility. While many tests use operant or touchscreen boxes that offer high throughput and reproducibility, the motor actions themselves are mostly simple presses of a designated lever. To focus more on motor actions during the operant task and to probe the flexibility of these well trained actions, we developed a new operant paradigm for mice, the "timed sequence task." The task requires mice to learn a sequence of lever presses that have to be emitted in precisely defined time limits. After training, the required pressing sequence and/or timing of individual presses is modified to test the ability of mice to alter their previously trained motor actions. We provide a code for the new protocol that can be used and adapted to common types of operant boxes. In addition, we provide a set of scripts that allow automatic extraction and analysis of numerous parameters recorded during each session. We demonstrate that the analysis of multiple performance parameters is necessary for detailed insight into the behavior of animals during the task. We validate our paradigm in an experiment using the valproate model of autism as a model of cognitive inflexibility. We show that the valproate mice show superior performance at specific stages of the task, paradoxically because of their propensity to more stereotypic behavior.

Zobrazit více v PubMed

Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564. 10.1038/nprot.2009.125 PubMed DOI

Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, Dell’Osso L (2019) Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 10:366. 10.3389/fpsyt.2019.00366 PubMed DOI PMC

Dhawale AK, Wolff SBE, Ko R, Ölveczky BP (2021) The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 24:1256–1269. 10.1038/s41593-021-00889-3 PubMed DOI PMC

Ergaz Z, Weinstein-Fudim L, Ornoy A (2016) Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol 64:116–140. 10.1016/j.reprotox.2016.04.024 PubMed DOI

Geddes CE, Li H, Jin X (2018) Optogenetic editing reveals the hierarchical organization of learned action sequences. Cell 174:32–43.e15. 10.1016/j.cell.2018.06.012 PubMed DOI PMC

Heath CJ, Phillips BU, Bussey TJ, Saksida LM (2016) Measuring motivation and reward-related decision making in the rodent operant touchscreen system. Curr Protoc Neurosci 74:8.34.1–8.34.20. 10.1002/0471142301.ns0834s74 PubMed DOI

Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SRO, Alsiö J, Oomen CA, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8:1961–1984. 10.1038/nprot.2013.122 PubMed DOI PMC

Janickova H, Kljakic O, Robbins TW, Saksida LM, Bussey TJ, Prado VF, Prado MAM (2021) Evaluating sequential response learning in the rodent operant touchscreen system. Curr Protoc 1:e268. 10.1002/cpz1.268 PubMed DOI

Keeler JF, Pretsell DO, Robbins TW (2014) Functional implications of dopamine D1 vs. D2 receptors: a “prepare and select” model of the striatal direct vs. indirect pathways. Neuroscience 282:156–175. 10.1016/j.neuroscience.2014.07.021 PubMed DOI

Korol DL, Malin EL, Borden KA, Busby RA, Couper-Leo J (2004) Shifts in preferred learning strategy across the estrous cycle in female rats. Horm Behav 45:330–338. 10.1016/j.yhbeh.2004.01.005 PubMed DOI

LaClair M, Febo M, Nephew B, Gervais NJ, Poirier G, Workman K, Chumachenko S, Payne L, Moore MC, King JA, Lacreuse A (2019) Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. eNeuro 6:ENEURO.0154-19.2019. 10.1523/ENEURO.0154-19.2019 PubMed DOI PMC

Lucchina L, Depino AM (2014) Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res 7:273–289. 10.1002/aur.1338 PubMed DOI

Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8:1985–2005. 10.1038/nprot.2013.123 PubMed DOI PMC

Martos YV, Braz BY, Beccaria JP, Murer MG, Belforte JE (2017) Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons. J Neurosci 37:2849–2858. 10.1523/JNEUROSCI.3460-16.2017 PubMed DOI PMC

Nadler JJ, Moy SS, Dold G, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314. 10.1111/j.1601-183X.2004.00071.x PubMed DOI

Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227. 10.1016/j.expneurol.2017.04.017 PubMed DOI

Puścian A, Lęski S, Górkiewicz T, Meyza K, Lipp H-P, Knapska E (2014) A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front Behav Neurosci 8:140. 10.3389/fnbeh.2014.00140 PubMed DOI PMC

Tartaglione AM, Schiavi S, Calamandrei G, Trezza V (2019) Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 159:107477. 10.1016/j.neuropharm.2018.12.024 PubMed DOI

Turner KM, Svegborn A, Langguth M, McKenzie C, Robbins TW (2022) Opposing roles of the dorsolateral and dorsomedial striatum in the acquisition of skilled action sequencing in rats. J Neurosci 42:2039–2051. 10.1523/JNEUROSCI.1907-21.2022 PubMed DOI PMC

Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. 10.1038/nprot.2006.116 PubMed DOI PMC

Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol 26:146–153. 10.1097/WCO.0b013e32835ee548 PubMed DOI PMC

Wolff SBE, Ko R, Ölveczky BP (2022) Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv 8:eabk0231. 10.1126/sciadv.abk0231 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...