Timed Sequence Task: A New Paradigm to Study Motor Learning and Flexibility in Mice
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37793806
PubMed Central
PMC10552695
DOI
10.1523/eneuro.0145-23.2023
PII: 10/10/ENEURO.0145-23.2023
Knihovny.cz E-zdroje
- Klíčová slova
- flexibility, mice, motor learning, operant learning,
- MeSH
- kyselina valproová * MeSH
- myši MeSH
- operantní podmiňování MeSH
- reprodukovatelnost výsledků MeSH
- učení * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina valproová * MeSH
Motor learning and flexibility allow animals to perform routine actions efficiently while keeping them flexible. A number of paradigms are used to test cognitive flexibility, but not many of them focus specifically on the learning of complex motor sequences and their flexibility. While many tests use operant or touchscreen boxes that offer high throughput and reproducibility, the motor actions themselves are mostly simple presses of a designated lever. To focus more on motor actions during the operant task and to probe the flexibility of these well trained actions, we developed a new operant paradigm for mice, the "timed sequence task." The task requires mice to learn a sequence of lever presses that have to be emitted in precisely defined time limits. After training, the required pressing sequence and/or timing of individual presses is modified to test the ability of mice to alter their previously trained motor actions. We provide a code for the new protocol that can be used and adapted to common types of operant boxes. In addition, we provide a set of scripts that allow automatic extraction and analysis of numerous parameters recorded during each session. We demonstrate that the analysis of multiple performance parameters is necessary for detailed insight into the behavior of animals during the task. We validate our paradigm in an experiment using the valproate model of autism as a model of cognitive inflexibility. We show that the valproate mice show superior performance at specific stages of the task, paradoxically because of their propensity to more stereotypic behavior.
Zobrazit více v PubMed
Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564. 10.1038/nprot.2009.125 PubMed DOI
Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, Dell’Osso L (2019) Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 10:366. 10.3389/fpsyt.2019.00366 PubMed DOI PMC
Dhawale AK, Wolff SBE, Ko R, Ölveczky BP (2021) The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 24:1256–1269. 10.1038/s41593-021-00889-3 PubMed DOI PMC
Ergaz Z, Weinstein-Fudim L, Ornoy A (2016) Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol 64:116–140. 10.1016/j.reprotox.2016.04.024 PubMed DOI
Geddes CE, Li H, Jin X (2018) Optogenetic editing reveals the hierarchical organization of learned action sequences. Cell 174:32–43.e15. 10.1016/j.cell.2018.06.012 PubMed DOI PMC
Heath CJ, Phillips BU, Bussey TJ, Saksida LM (2016) Measuring motivation and reward-related decision making in the rodent operant touchscreen system. Curr Protoc Neurosci 74:8.34.1–8.34.20. 10.1002/0471142301.ns0834s74 PubMed DOI
Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SRO, Alsiö J, Oomen CA, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8:1961–1984. 10.1038/nprot.2013.122 PubMed DOI PMC
Janickova H, Kljakic O, Robbins TW, Saksida LM, Bussey TJ, Prado VF, Prado MAM (2021) Evaluating sequential response learning in the rodent operant touchscreen system. Curr Protoc 1:e268. 10.1002/cpz1.268 PubMed DOI
Keeler JF, Pretsell DO, Robbins TW (2014) Functional implications of dopamine D1 vs. D2 receptors: a “prepare and select” model of the striatal direct vs. indirect pathways. Neuroscience 282:156–175. 10.1016/j.neuroscience.2014.07.021 PubMed DOI
Korol DL, Malin EL, Borden KA, Busby RA, Couper-Leo J (2004) Shifts in preferred learning strategy across the estrous cycle in female rats. Horm Behav 45:330–338. 10.1016/j.yhbeh.2004.01.005 PubMed DOI
LaClair M, Febo M, Nephew B, Gervais NJ, Poirier G, Workman K, Chumachenko S, Payne L, Moore MC, King JA, Lacreuse A (2019) Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. eNeuro 6:ENEURO.0154-19.2019. 10.1523/ENEURO.0154-19.2019 PubMed DOI PMC
Lucchina L, Depino AM (2014) Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res 7:273–289. 10.1002/aur.1338 PubMed DOI
Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8:1985–2005. 10.1038/nprot.2013.123 PubMed DOI PMC
Martos YV, Braz BY, Beccaria JP, Murer MG, Belforte JE (2017) Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons. J Neurosci 37:2849–2858. 10.1523/JNEUROSCI.3460-16.2017 PubMed DOI PMC
Nadler JJ, Moy SS, Dold G, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314. 10.1111/j.1601-183X.2004.00071.x PubMed DOI
Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227. 10.1016/j.expneurol.2017.04.017 PubMed DOI
Puścian A, Lęski S, Górkiewicz T, Meyza K, Lipp H-P, Knapska E (2014) A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front Behav Neurosci 8:140. 10.3389/fnbeh.2014.00140 PubMed DOI PMC
Tartaglione AM, Schiavi S, Calamandrei G, Trezza V (2019) Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 159:107477. 10.1016/j.neuropharm.2018.12.024 PubMed DOI
Turner KM, Svegborn A, Langguth M, McKenzie C, Robbins TW (2022) Opposing roles of the dorsolateral and dorsomedial striatum in the acquisition of skilled action sequencing in rats. J Neurosci 42:2039–2051. 10.1523/JNEUROSCI.1907-21.2022 PubMed DOI PMC
Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. 10.1038/nprot.2006.116 PubMed DOI PMC
Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol 26:146–153. 10.1097/WCO.0b013e32835ee548 PubMed DOI PMC
Wolff SBE, Ko R, Ölveczky BP (2022) Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv 8:eabk0231. 10.1126/sciadv.abk0231 PubMed DOI PMC