Inebilizumab reduces neuromyelitis optica spectrum disorder risk independent of FCGR3A polymorphism

. 2023 Dec ; 10 (12) : 2413-2420. [epub] 20231007

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37804003

Grantová podpora
MedImmune/AstraZeneca

Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.

Zobrazit více v PubMed

Wingerchuk DM, Lucchinetti CF. Neuromyelitis optica spectrum disorder. N Engl J Med. 2022;387(7):631‐639. doi:10.1056/NEJMra1904655 PubMed DOI

Cree BA, Bennett JL, Sheehan M, et al. Placebo‐controlled study in neuromyelitis optica‐ethical and design considerations. Mult Scler. 2016;22(7):862‐872. doi:10.1177/1352458515620934 PubMed DOI PMC

Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24(1):83‐97. doi:10.1111/bpa.12099 PubMed DOI PMC

Beekman J, Keisler A, Pedraza O, et al. Neuromyelitis optica spectrum disorder: patient experience and quality of life. Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e580. doi:10.1212/nxi.0000000000000580 PubMed DOI PMC

Prasad S, Chen J. What you need to know about AQP4, MOG, and NMOSD. Semin Neurol. 2019;39(6):718‐731. doi:10.1055/s-0039-3399505 PubMed DOI

Marignier R, Pittock SJ, Paul F, et al. AQP4‐IgG‐seronegative patient outcomes in the N‐MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2022;57:103356. doi:10.1016/j.msard.2021.103356 PubMed DOI

Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic‐spinal multiple sclerosis binds to the aquaporin‐4 water channel. J Exp Med. 2005;202(4):473‐477. doi:10.1084/jem.20050304 PubMed DOI PMC

Huda S, Whittam D, Bhojak M, Chamberlain J, Noonan C, Jacob A. Neuromyelitis optica spectrum disorders. Clin Med (Lond). 2019;19(2):169‐176. doi:10.7861/clinmedicine.19-2-169 PubMed DOI PMC

Traub J, Husseini L, Weber MS. B cells and antibodies as targets of therapeutic intervention in neuromyelitis optica spectrum disorders. Pharmaceuticals (Basel). 2021;14(1):37. doi:10.3390/ph14010037 PubMed DOI PMC

Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179‐199. doi:10.1038/s41573-020-00092-2 PubMed DOI PMC

Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi:10.1186/2162-3619-1-36 PubMed DOI PMC

Kläsener K, Jellusova J, Andrieux G, et al. CD20 as a gatekeeper of the resting state of human B cells. Proc Natl Acad Sci U S A. 2021;118(7):e2021342118. doi:10.1073/pnas.2021342118 PubMed DOI PMC

Bennett JL, O'Connor KC, Bar‐Or A, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e104. doi:10.1212/nxi.0000000000000104 PubMed DOI PMC

Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell‐based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018;11:1756286418761697. doi:10.1177/1756286418761697 PubMed DOI PMC

Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti‐aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A. 2011;108(9):3701‐3706. doi:10.1073/pnas.1017385108 PubMed DOI PMC

Kim SH, Jeong IH, Hyun JW, et al. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 2015;72(9):989‐995. doi:10.1001/jamaneurol.2015.1276 PubMed DOI

Robledo G, Márquez A, Dávila‐Fajardo CL, et al. Association of the FCGR3A‐158F/V gene polymorphism with the response to rituximab treatment in Spanish systemic autoimmune disease patients. DNA Cell Biol. 2012;31(12):1671‐1677. doi:10.1089/dna.2012.1799 PubMed DOI

Pál I, Szamosi S, Hodosi K, Szekanecz Z, Váróczy L. Effect of Fcγ‐receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open. 2017;3(2):e000485. doi:10.1136/rmdopen-2017-000485 PubMed DOI PMC

Kastbom A, Cöster L, Arlestig L, et al. Influence of FCGR3A genotype on the therapeutic response to rituximab in rheumatoid arthritis: an observational cohort study. BMJ Open. 2012;2(5):e001524. doi:10.1136/bmjopen-2012-001524 PubMed DOI PMC

Ruyssen‐Witrand A, Rouanet S, Combe B, et al. Fcγ receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875‐877. doi:10.1136/annrheumdis-2011-200337 PubMed DOI

Robinson JI, Md Yusof MY, Davies V, et al. Comprehensive genetic and functional analyses of fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine. 2022;86:104343. doi:10.1016/j.ebiom.2022.104343 PubMed DOI PMC

Hargreaves CE, Rose‐Zerilli MJ, Machado LR, et al. Fcγ receptors: genetic variation, function, and disease. Immunol Rev. 2015;268(1):6‐24. doi:10.1111/imr.12341 PubMed DOI

Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059‐1070. doi:10.1172/jci119616 PubMed DOI PMC

Herbst R, Wang Y, Gallagher S, et al. B‐cell depletion in vitro and in vivo with an afucosylated anti‐CD19 antibody. J Pharmacol Exp Ther. 2010;335(1):213‐222. doi:10.1124/jpet.110.168062 PubMed DOI

Frampton JE. Inebilizumab: first approval. Drugs. 2020;80(12):1259‐1264. doi:10.1007/s40265-020-01370-4 PubMed DOI PMC

Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B cell‐depleting anti‐CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med. 2016;5(12):107. doi:10.3390/jcm5120107 PubMed DOI PMC

Pereira NA, Chan KF, Lin PC, Song Z. The “less‐is‐more” in therapeutic antibodies: Afucosylated anti‐cancer antibodies with enhanced antibody‐dependent cellular cytotoxicity. MAbs. 2018;10(5):693‐711. doi:10.1080/19420862.2018.1466767 PubMed DOI PMC

Niwa R, Hatanaka S, Shoji‐Hosaka E, et al. Enhancement of the antibody‐dependent cellular cytotoxicity of low‐fucose IgG1 is independent of FcgammaRIIIa functional polymorphism. Clin Cancer Res. 2004;10(18 Pt 1):6248‐6255. doi:10.1158/1078-0432.Ccr-04-0850 PubMed DOI

Masuda K, Kubota T, Kaneko E, et al. Enhanced binding affinity for FcgammaRIIIa of fucose‐negative antibody is sufficient to induce maximal antibody‐dependent cellular cytotoxicity. Mol Immunol. 2007;44(12):3122‐3131. doi:10.1016/j.molimm.2007.02.005 PubMed DOI

Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N‐MOmentum): a double‐blind, randomised placebo‐controlled phase 2/3 trial. Lancet. 2019;394(10206):1352‐1363. doi:10.1016/s0140-6736(19)31817-3 PubMed DOI

T‐ and B‐Lymphocyte Differential Profile. Laboratory Corporation of America; 2021. Accessed May 30, 2023. https://www.labcorp.com/tests/096917/t‐and‐b‐lymphocyte‐differential‐profile

Bennett JL, Aktas O, Rees WA, et al. Association between B‐cell depletion and attack risk in neuromyelitis optica spectrum disorder: an exploratory analysis from N‐MOmentum, a double‐blind, randomised, placebo‐controlled, multicentre phase 2/3 trial. EBioMedicine. 2022;86:104321. doi:10.1016/j.ebiom.2022.104321 PubMed DOI PMC

Streicher K, Morehouse CA, Groves CJ, et al. The plasma cell signature in autoimmune disease. Arthritis Rheumatol. 2014;66(1):173‐184. doi:10.1002/art.38194 PubMed DOI

Agius MA, Klodowska‐Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI‐551), an anti‐CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo‐controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2019;25(2):235‐245. doi:10.1177/1352458517740641 PubMed DOI PMC

Zhong M, van der Walt A, Campagna MP, Stankovich J, Butzkueven H, Jokubaitis V. The Pharmacogenetics of rituximab: potential implications for anti‐CD20 therapies in multiple sclerosis. Neurotherapeutics. 2020;17(4):1768‐1784. doi:10.1007/s13311-020-00950-2 PubMed DOI PMC

Dong C, Ptacek TS, Redden DT, et al. Fcγ receptor IIIa single‐nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol. 2014;66(5):1291‐1299. doi:10.1002/art.38337 PubMed DOI PMC

Quartuccio L, Fabris M, Pontarini E, et al. The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: results of an Italian multicentre study. Ann Rheum Dis. 2014;73(4):716‐721. doi:10.1136/annrheumdis-2012-202435 PubMed DOI

Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti‐CD20 monoclonal antibody and polymorphism in IgG fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754‐758. doi:10.1182/blood.v99.3.754 PubMed DOI

Ternant D, Cartron G, Hénin E, Tod M, Girard P, Paintaud G. Model‐based design of rituximab dosage optimization in follicular non‐Hodgkin's lymphoma. Br J Clin Pharmacol. 2012;73(4):597‐605. doi:10.1111/j.1365-2125.2011.04125.x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...