Inebilizumab reduces neuromyelitis optica spectrum disorder risk independent of FCGR3A polymorphism
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MedImmune/AstraZeneca
PubMed
37804003
PubMed Central
PMC10723240
DOI
10.1002/acn3.51911
Knihovny.cz E-zdroje
- MeSH
- akvaporin 4 genetika MeSH
- humanizované monoklonální protilátky terapeutické užití MeSH
- imunoglobulin G MeSH
- lidé MeSH
- neuromyelitis optica * farmakoterapie genetika MeSH
- receptory IgG genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akvaporin 4 MeSH
- FCGR3A protein, human MeSH Prohlížeč
- humanizované monoklonální protilátky MeSH
- imunoglobulin G MeSH
- inebilizumab MeSH Prohlížeč
- receptory IgG MeSH
Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.
Brain and Mind Centre University of Sydney New South Wales Sydney Australia
Department of Neurology Medical University Vienna Vienna Austria
Department of Neurology Mellen Center for Multiple Sclerosis Cleveland Clinic Ohio Cleveland USA
Department of Neurology Palacky University in Olomouc Olomouc Czech Republic
Department of Neurology Research Institute and Hospital of National Cancer Center Goyang South Korea
Department of Neurology University of Virginia Virginia Charlottesville USA
Horizon Therapeutics Illinois Deerfield USA
Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Zobrazit více v PubMed
Wingerchuk DM, Lucchinetti CF. Neuromyelitis optica spectrum disorder. N Engl J Med. 2022;387(7):631‐639. doi:10.1056/NEJMra1904655 PubMed DOI
Cree BA, Bennett JL, Sheehan M, et al. Placebo‐controlled study in neuromyelitis optica‐ethical and design considerations. Mult Scler. 2016;22(7):862‐872. doi:10.1177/1352458515620934 PubMed DOI PMC
Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24(1):83‐97. doi:10.1111/bpa.12099 PubMed DOI PMC
Beekman J, Keisler A, Pedraza O, et al. Neuromyelitis optica spectrum disorder: patient experience and quality of life. Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e580. doi:10.1212/nxi.0000000000000580 PubMed DOI PMC
Prasad S, Chen J. What you need to know about AQP4, MOG, and NMOSD. Semin Neurol. 2019;39(6):718‐731. doi:10.1055/s-0039-3399505 PubMed DOI
Marignier R, Pittock SJ, Paul F, et al. AQP4‐IgG‐seronegative patient outcomes in the N‐MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2022;57:103356. doi:10.1016/j.msard.2021.103356 PubMed DOI
Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic‐spinal multiple sclerosis binds to the aquaporin‐4 water channel. J Exp Med. 2005;202(4):473‐477. doi:10.1084/jem.20050304 PubMed DOI PMC
Huda S, Whittam D, Bhojak M, Chamberlain J, Noonan C, Jacob A. Neuromyelitis optica spectrum disorders. Clin Med (Lond). 2019;19(2):169‐176. doi:10.7861/clinmedicine.19-2-169 PubMed DOI PMC
Traub J, Husseini L, Weber MS. B cells and antibodies as targets of therapeutic intervention in neuromyelitis optica spectrum disorders. Pharmaceuticals (Basel). 2021;14(1):37. doi:10.3390/ph14010037 PubMed DOI PMC
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179‐199. doi:10.1038/s41573-020-00092-2 PubMed DOI PMC
Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi:10.1186/2162-3619-1-36 PubMed DOI PMC
Kläsener K, Jellusova J, Andrieux G, et al. CD20 as a gatekeeper of the resting state of human B cells. Proc Natl Acad Sci U S A. 2021;118(7):e2021342118. doi:10.1073/pnas.2021342118 PubMed DOI PMC
Bennett JL, O'Connor KC, Bar‐Or A, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e104. doi:10.1212/nxi.0000000000000104 PubMed DOI PMC
Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell‐based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018;11:1756286418761697. doi:10.1177/1756286418761697 PubMed DOI PMC
Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti‐aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A. 2011;108(9):3701‐3706. doi:10.1073/pnas.1017385108 PubMed DOI PMC
Kim SH, Jeong IH, Hyun JW, et al. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 2015;72(9):989‐995. doi:10.1001/jamaneurol.2015.1276 PubMed DOI
Robledo G, Márquez A, Dávila‐Fajardo CL, et al. Association of the FCGR3A‐158F/V gene polymorphism with the response to rituximab treatment in Spanish systemic autoimmune disease patients. DNA Cell Biol. 2012;31(12):1671‐1677. doi:10.1089/dna.2012.1799 PubMed DOI
Pál I, Szamosi S, Hodosi K, Szekanecz Z, Váróczy L. Effect of Fcγ‐receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open. 2017;3(2):e000485. doi:10.1136/rmdopen-2017-000485 PubMed DOI PMC
Kastbom A, Cöster L, Arlestig L, et al. Influence of FCGR3A genotype on the therapeutic response to rituximab in rheumatoid arthritis: an observational cohort study. BMJ Open. 2012;2(5):e001524. doi:10.1136/bmjopen-2012-001524 PubMed DOI PMC
Ruyssen‐Witrand A, Rouanet S, Combe B, et al. Fcγ receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875‐877. doi:10.1136/annrheumdis-2011-200337 PubMed DOI
Robinson JI, Md Yusof MY, Davies V, et al. Comprehensive genetic and functional analyses of fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine. 2022;86:104343. doi:10.1016/j.ebiom.2022.104343 PubMed DOI PMC
Hargreaves CE, Rose‐Zerilli MJ, Machado LR, et al. Fcγ receptors: genetic variation, function, and disease. Immunol Rev. 2015;268(1):6‐24. doi:10.1111/imr.12341 PubMed DOI
Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059‐1070. doi:10.1172/jci119616 PubMed DOI PMC
Herbst R, Wang Y, Gallagher S, et al. B‐cell depletion in vitro and in vivo with an afucosylated anti‐CD19 antibody. J Pharmacol Exp Ther. 2010;335(1):213‐222. doi:10.1124/jpet.110.168062 PubMed DOI
Frampton JE. Inebilizumab: first approval. Drugs. 2020;80(12):1259‐1264. doi:10.1007/s40265-020-01370-4 PubMed DOI PMC
Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B cell‐depleting anti‐CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med. 2016;5(12):107. doi:10.3390/jcm5120107 PubMed DOI PMC
Pereira NA, Chan KF, Lin PC, Song Z. The “less‐is‐more” in therapeutic antibodies: Afucosylated anti‐cancer antibodies with enhanced antibody‐dependent cellular cytotoxicity. MAbs. 2018;10(5):693‐711. doi:10.1080/19420862.2018.1466767 PubMed DOI PMC
Niwa R, Hatanaka S, Shoji‐Hosaka E, et al. Enhancement of the antibody‐dependent cellular cytotoxicity of low‐fucose IgG1 is independent of FcgammaRIIIa functional polymorphism. Clin Cancer Res. 2004;10(18 Pt 1):6248‐6255. doi:10.1158/1078-0432.Ccr-04-0850 PubMed DOI
Masuda K, Kubota T, Kaneko E, et al. Enhanced binding affinity for FcgammaRIIIa of fucose‐negative antibody is sufficient to induce maximal antibody‐dependent cellular cytotoxicity. Mol Immunol. 2007;44(12):3122‐3131. doi:10.1016/j.molimm.2007.02.005 PubMed DOI
Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N‐MOmentum): a double‐blind, randomised placebo‐controlled phase 2/3 trial. Lancet. 2019;394(10206):1352‐1363. doi:10.1016/s0140-6736(19)31817-3 PubMed DOI
T‐ and B‐Lymphocyte Differential Profile. Laboratory Corporation of America; 2021. Accessed May 30, 2023. https://www.labcorp.com/tests/096917/t‐and‐b‐lymphocyte‐differential‐profile
Bennett JL, Aktas O, Rees WA, et al. Association between B‐cell depletion and attack risk in neuromyelitis optica spectrum disorder: an exploratory analysis from N‐MOmentum, a double‐blind, randomised, placebo‐controlled, multicentre phase 2/3 trial. EBioMedicine. 2022;86:104321. doi:10.1016/j.ebiom.2022.104321 PubMed DOI PMC
Streicher K, Morehouse CA, Groves CJ, et al. The plasma cell signature in autoimmune disease. Arthritis Rheumatol. 2014;66(1):173‐184. doi:10.1002/art.38194 PubMed DOI
Agius MA, Klodowska‐Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI‐551), an anti‐CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo‐controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2019;25(2):235‐245. doi:10.1177/1352458517740641 PubMed DOI PMC
Zhong M, van der Walt A, Campagna MP, Stankovich J, Butzkueven H, Jokubaitis V. The Pharmacogenetics of rituximab: potential implications for anti‐CD20 therapies in multiple sclerosis. Neurotherapeutics. 2020;17(4):1768‐1784. doi:10.1007/s13311-020-00950-2 PubMed DOI PMC
Dong C, Ptacek TS, Redden DT, et al. Fcγ receptor IIIa single‐nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol. 2014;66(5):1291‐1299. doi:10.1002/art.38337 PubMed DOI PMC
Quartuccio L, Fabris M, Pontarini E, et al. The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: results of an Italian multicentre study. Ann Rheum Dis. 2014;73(4):716‐721. doi:10.1136/annrheumdis-2012-202435 PubMed DOI
Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti‐CD20 monoclonal antibody and polymorphism in IgG fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754‐758. doi:10.1182/blood.v99.3.754 PubMed DOI
Ternant D, Cartron G, Hénin E, Tod M, Girard P, Paintaud G. Model‐based design of rituximab dosage optimization in follicular non‐Hodgkin's lymphoma. Br J Clin Pharmacol. 2012;73(4):597‐605. doi:10.1111/j.1365-2125.2011.04125.x PubMed DOI PMC