Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
ARBRE-MOBIEU CA15126
European Cooperation in Science and Technology
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
KK.01.1.1.02.0016
European Regional Development Fund
ESF-DOK-01-2018
Hrvatska Zaklada za Znanost
IP-2014-09-4274
Hrvatska Zaklada za Znanost
IP-2016-06-6272
Hrvatska Zaklada za Znanost
LM2023042
Ministerstvo školství, mládeže a tělovýchovy
Sveučilište u Zagrebu
PubMed
37804069
DOI
10.1002/1873-3468.14748
Knihovny.cz E-zdroje
- Klíčová slova
- aminoacyl-tRNA synthetase, cysteine reactivity, disulfide bond, hydrogen peroxide, oxidative stress, thermal stability,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- cystein genetika metabolismus MeSH
- disulfidy MeSH
- oxidace-redukce MeSH
- rostliny metabolismus MeSH
- serin-tRNA-ligasa * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- disulfidy MeSH
- serin-tRNA-ligasa * MeSH
We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.
Central European Institute of Technology Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Passam FJ and Chiu J (2019) Allosteric disulphide bonds as reversible mechano-sensitive switches that control protein functions in the vasculature. Biophys Rev 11, 419-430.
Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151, 261-287.
Bechtel TJ and Weerapana E (2017) From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17, 1-34.
Cook KM and Hogg PJ (2013) Post-translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal 18, 1987-2015.
Chiu J and Hogg PJ (2019) Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J Biol Chem 294, 2949-5908.
Wouters MA, Fan SW and Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12, 321-322.
Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH and Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279, 21749-21758.
Huang J, Niazi A, Young D, Rosado L, Vertommen D, Bodra N, Abdelgawwad M, Vignols F, Wei B, Wahni K et al. (2018) Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. J Exp Bot 69, 3491-3505.
Linke K and Jakob U (2003) Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5, 425-434.
Kekez M, Zanki V, Kekez I, Baranasic J, Hodnik V, Duchêne AM, Anderluh G, Gruic-Sovulj I, Matković-Čalogović D, Weygand-Durasevic I et al. (2019) Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase. FEBS J 286, 536-554.
Kekez M, Bauer N, Saric E and Rokov-Plavec J (2016) Exclusive cytosolic localization and broad tRNASer specificity of Arabidopsis thaliana seryl-tRNA synthetase. J Plant Biol 59, 44-54.
Perona JJ and Gruic-Sovulj I (2013) Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem 344, 1-41.
Tawfik DS and Gruic-Sovulj I (2020) How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 287, 1284-1305.
Rubio Gomez MA and Ibba M (2020) Aminoacyl-tRNA synthetases. RNA 26, 910-936.
Rokov-Plavec J, Dulic M, Duchêne AM and Weygand-Durasevic I (2008) Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep 27, 1157-1168.
Rokov J, Söll D and Weygand-Durašević I (1998) Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro. Plant Mol Biol 38, 497-502.
Rokov-Plavec J, Lesjak S, Landeka I, Mijakovic I and Weygand-Durasevic I (2002) Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Arch Biochem Biophys 397, 40-50.
Rokov J and Weygand-Đurašević I (1999) Seryl-tRNA synthesis in maize. Period Biol 101, 137-142.
Rokov-Plavec J, Bilokapić S, Gruić-Sovulj I, Močibob M, Glavan F, Brgles M and Weygand- Đurašević I (2004) Unilateral flexibility in tRNASer recognition by heterologous seryl-tRNA synthetases. Period Biol 106, 147-154.
Rokov-Plavec J, Lesjak S, Gruic-Sovulj I, Mocibob M, Dulic M and Weygand-Durasevic I (2013) Substrate recognition and fidelity of maize seryl-tRNA synthetases. Arch Biochem Biophys 529, 122-130.
Baranašić J, Mihalak A, Gruić-Sovulj I, Bauer N and Rokov-Plavec J (2021) Expression of genes for selected plant aminoacyl-tRNA synthetases in the abiotic stress. Acta Bot Croat 80, 35-42.
Kekez M, Zanki V, Antičević I, Rokov-Plavec J and Maršavelski A (2021) Importance of protein intrinsic conformational dynamics and transient nature of non-covalent interactions in ligand binding affinity. Int J Biol Macromol 192, 692-700.
Močibob M, Rokov-Plavec J, Godinić-Mikulčić V and Gruić-Sovulj I (2016) Seryl-tRNA synthetases in translation and beyond. Croat Chem Acta 89, 261-276.
Cusack S, Berthet-Colominas C, Härtlein M, Nassar N and Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249-255.
Belrhali H, Yaremchuk A, Tukalo M, Larsen K, Berthet-Colominas C, Leberman R, Beijer B, Sproat B, Als-Nielsen J, Grübel G et al. (1994) Crystal structures at 2.5 Angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science 263, 1432-1436.
Biou V, Yaremchuk A, Tukalo M and Cusack S (1994) The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404-1410.
Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Söll D, Weygand-Durasevic I and Ban N (2006) Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 25, 2498-2509.
Itoh Y, Sekine S, Kuroishi C, Terada T, Shirouzu M, Kuramitsu S and Yokoyama S (2008) Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. RNA Biol 5, 169-177.
Itoh Y, Sekine SI, Suetsugu S and Yokoyama S (2013) Tertiary structure of bacterial selenocysteine tRNA. Nucleic Acids Res 41, 6729-6738.
Chimnaronk S, Jeppesen MG, Suzuki T, Nyborg J and Watanabe K (2005) Dual-mode recognition of noncanonical tRNAsSer by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 24, 3369-3379.
Rocha R, Barbosa Pereira PJ, Santos MAS and Macedo-Ribeiro S (2011) Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen. Proc Natl Acad Sci USA 108, 14091-14096.
Xu X, Shi Y and Yang XL (2013) Crystal structure of human seryl-tRNA synthetase and Ser-SA complex reveals a molecular lever specific to higher eukaryotes. Structure 21, 2078-2086.
Xu X, Shi Y, Zhang HM, Swindell EC, Marshall AG, Guo M, Kishi S and Yang XL (2012) Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat Commun 3, 681-689.
Wang C, Guo Y, Tian Q, Jia Q, Gao Y, Zhang Q, Zhou C and Xie W (2015) SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Nucleic Acids Res 43, 10534-10545.
Cain R, Salimraj R, Punekar AS, Belini D, Fishwick CWG, Czaplewski L, Scott DJ, Harris G, Dowson CG, Lloyd AJ et al. (2019) Structure-guided enhancement of selectivity of chemical probe inhibitors targeting bacterial seryl-tRNA synthetase. J Med Chem 62, 9703-9717.
Kuhle B, Hirschi M, Doerfel LK, Lander GC and Schimmel P (2022) Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nat Commun 13, 5100.
Pang L, Nautiyal M, De Graef S, Gadakh B, Zorzini V, Economou A, Strelkov SV, Van Aerschot A and Weeks SD (2020) Structural insights into the binding of natural pyrimidine-based inhibitors of class II aminoacyl-tRNA synthetases. ACS Chem Biol 15, 407-415.
De Ruysscher D, Pang L, De Graef S, Nautiyal M, De Borggraeve WM, Rozenski J, Strelkov SV, Weeks SD and Van Aerschot A (2019) Acylated sulfonamide adenosines as potent inhibitors of the adenylate-forming enzyme superfamily. Eur J Med Chem 174, 252-264.
Zambaldo C, Koh M, Nasertorabi F, Han GW, Chatterjee A, Stevens RC and Schultz PG (2020) An orthogonal seryl-tRNA synthetase/tRNA pair for noncanonical amino acid mutagenesis in Escherichia coli. Bioorg Med Chem 28, 115662.
Chakraborty S, Ganguli S, Chowdhury A, Ibba M and Banerjee R (2018) Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress. Biochim Biophys Acta Gen Subj 1862, 1801-1809.
Alexander CG, Wanner R, Johnson CM, Breitsprecher D, Winter G, Duhr S, Baaske P and Ferguson N (2014) Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. Biochim Biophys Acta 1844, 2241-2250.
Magnusson AO, Szekrenyi A, Joosten HJ, Finnigan J, Charnock S and Fessner WD (2019) NanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J 286, 184-204.
Mocibob M and Weygand-Durasevic I (2008) The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch Biochem Biophys 470, 129-138.
Rappsilber J, Mann M and Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896-1906.
Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50, 157-163.
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F and Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242.
Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS and Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21.
Krissinel E and Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797.
McNicholas S, Potterton E, Wilson KS and Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67, 386-394.
Kelley LA, Mezulis S, Yates CM, Wass MN and Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845-858.
Qureshi MK, Gawroński P, Munir S, Jindal S and Kerchev P (2022) Hydrogen peroxide - induced stress acclimation in plants. Cell Mol Life Sci 79, 129.
Mittler R (2017) ROS are good. Trends Plant Sci 22, 11-19.
Fass D and Thorpe C (2018) Chemistry and enzymology of disulfide cross-linking in proteins. Chem Rev 118, 1169-1198.
Groitl B and Jakob U (2014) Thiol-based redox switches. Biochim Biophys Acta 1884, 1335-1343.
Britto PJ, Knipling L and Wolff J (2002) The local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem 277, 29018-29027.
Ringer AL, Senenko A and Sherrill CD (2007) Models of S/π interactions in protein structures: comparison of the H2S-benzene complex with PDB data. Protein Sci 16, 2216-2223.
Wong JWH, Ho SYW and Hogg PJ (2011) Disulfide bond acquisition through eukaryotic protein evolution. Mol Biol Evol 28, 327-334.
Marino SM and Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404, 902-916.
Weygand-Durašević I, Ban N, Jahn D and Söll D (1993) Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo. Eur J Biochem 214, 869-877.
Matsui A, Nakaminami K and Seki M (2019) Biological function of changes in RNA metabolism in plant adaptation to abiotic stress. Plant Cell Physiol 60, 1897-1905.
Han NC, Kelly P and Ibba M (2020) Translational quality control and reprogramming during stress adaptation. Exp Cell Res 394, 112161.
Liu B and Qian S (2014) Translational reprogramming. Wiley Interdiscip Rev RNA 5, 301-315.
Puckette M, Iyer NJ, Tang Y, Dai X, Zhao P and Mahalingam R (2012) Differential mRNA translation in Medicago truncatula accessions with contrasting responses to ozone-induced oxidative stress. Mol Plant 5, 187-204.
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B and Schippers JHM (2015) A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant Cell Environ 38, 349-363.
Merchante C, Stepanova AN and Alonso JM (2017) Translation regulation in plants: an interesting past, an exciting present and a promising future. Plant J 90, 628-653.
Van Ruyskensvelde V, Van Breusegem F and Van Der Kelen K (2018) Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 122, 181-192.
Tripathy BC and Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7, 1621-1633.
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L and Rivero RM (2022) Redox post-translational modifications and their interplay in plant abiotic stress tolerance. Front Plant Sci 13, 1027730.
Camejo D, Guzmán-Cedeño A, Vera-Macias L and Jiménez A (2019) Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol Biochem 144, 110-117.
Paulsen CE and Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5, 47-62.
Kettenhofen NJ and Wood MJ (2010) Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol 23, 1633-1646.
Ling J and Söll D (2010) Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci USA 107, 4028-4033.
Cusack S, Yaremchuk A and Tukalo M (1996) The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNASer and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J 15, 2834-2842.
Gitler C, Zarmi B and Kalef E (1997) General method to identify and enrich vicinal thiol proteins present in intact cells in the oxidized, disulfide state. Anal Biochem 252, 48-55.
Schafer FQ and Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30, 1191-1212.
Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16, 476-495.
Fratelli M, Gianazza E and Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1, 365-376.
Requejo R, Chouchani ET, James AM, Prime TA, Lilley KS, Fearnley IM and Murphy MP (2010) Quantification and identification of mitochondrial proteins containing vicinal dithiols. Arch Biochem Biophys 504, 228-235.
Scarlett JL, Packer MA, Porteous CM and Murphy MP (1996) Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochem Pharmacol 52, 1047-1055.
Moore M, Gossmann N and Dietz K-J (2016) Redox regulation of cytosolic translation in plants. Trends Plant Sci 21, 388-397.
Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot J et al. (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7, 919-929.
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A and Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50, W276-W279.
Waterhouse AM, Procter JB, Martin DMA, Clamp M and Barton GJ (2009) Jalview version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191.