• This record comes from PubMed

Insight into the mechanism of CD34+ cell mobilisation impairment in multiple myeloma patients treated with anti-CD38 therapy

. 2024 Apr ; 204 (4) : 1439-1449. [epub] 20231009

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.

See more in PubMed

Bhatnagar V, Gormley NJ, Luo L, Shen YL, Sridhara R, Subramaniam S, et al. FDA approval summary: daratumumab for treatment of multiple myeloma after one prior therapy. Oncologist. 2017;22(11):1347–1353.

Dhillon S. Isatuximab: first approval. Drugs. 2020;80(9):905–912.

Usmani SZ, Weiss BM, Plesner T, Bahlis NJ, Belch A, Lonial S, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128(1):37–44.

Mikhael J, Richter J, Vij R, Cole C, Zonder J, Kaufman JL, et al. A dose‐finding phase 2 study of single agent isatuximab (anti‐CD38 mAb) in relapsed/refractory multiple myeloma. Leukemia. 2020;34(12):3298–3309.

Martin T, Baz R, Benson DM, Lendvai N, Wolf J, Munster P, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;129(25):3294–3303.

Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–981.

Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem‐cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open‐label, phase 3 study. Lancet. 2019;394(10192):29–38.

Leypoldt LB, Besemer B, Asemissen AM, Hänel M, Blau IW, Görner M, et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa‐KRd) in front‐line treatment of high‐risk multiple myeloma: interim analysis of the GMMG‐CONCEPT trial. Leukemia. 2022;36(3):885–888.

Hulin C, Offner F, Moreau P, Roussel M, Belhadj K, Benboubker L, et al. Stem cell yield and transplantation in transplant‐eligible newly diagnosed multiple myeloma patients receiving daratumumab + bortezomib/thalidomide/dexamethasone in the phase 3 CASSIOPEIA study. Haematologica. 2021;106(8):2257–2260.

Saleh ASA, Sidiqi MH, Gertz MA, Muchtar E, Lacy MQ, Warsame RM, et al. Delayed neutrophil engraftment in patients receiving daratumumab as part of their first induction regimen for multiple myeloma. Am J Hematol. 2020;95(1):E8–E10.

van de Donk NWCJ, Moreau P, Plesner T, Palumbo A, Gay F, Laubach JP, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016;127(6):681–695.

Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens‐Harig M, Neben K, et al. Poor mobilization of hematopoietic stem cells‐definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant. 2010;16(4):490–499.

Görgens A, Radtke S, Möllmann M, Cross M, Dürig J, Horn PA, et al. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 2013;3(5):1539–1552.

Dmytrus J, Matthes‐Martin S, Pichler H, Worel N, Geyeregger R, Frank N, et al. Multi‐color immune‐phenotyping of CD34 subsets reveals unexpected differences between various stem cell sources. Bone Marrow Transplant. 2016;51(8):1093–1100.

Bendall LJ, Bradstock KF. G‐CSF: from granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev. 2014;25(4):355–367.

Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30(9):973–981.

Cao H, Heazlewood SY, Williams B, Cardozo D, Nigro J, Oteiza A, et al. The role of CD44 in fetal and adult hematopoietic stem cell regulation. Haematologica. 2016;101(1):26–37.

Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand‐Lions M. Adhesion molecules involved in stem cell niche retention during normal haematopoiesis and in acute myeloid Leukaemia. Front Immunol. 2021;12:756231.

Levesque JP, Winkler IG. Cell adhesion molecules in Normal and malignant hematopoiesis: from bench to bedside. Curr Stem Cell Rep. 2016;2(4):356–367.

Sutherland DR, Anderson L, Keeney M, Nayar R, Chin‐Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5(3):213–226.

Kalina T, Flores‐Montero J, van der Velden VHJ, Martin‐Ayuso M, Böttcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.

Flores‐Montero J, Sanoja‐Flores L, Paiva B, Puig N, García‐Sánchez O, Böttcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–2103.

Hayashido Y, Hamana T, Ishida Y, Shintani T, Koizumi KI, Okamoto T. Induction of alpha2‐antiplasmin inhibits E‐cadherin processing mediated by the plasminogen activator/plasmin system, leading to suppression of progression of oral squamous cell carcinoma via upregulation of cell‐cell adhesion. Oncol Rep. 2007;17(2):417–423.

Clemmensen I, Petersen LC, Kluft C. Purification and characterization of a novel, oligomeric, plasminogen kringle 4 binding protein from human plasma: tetranectin. Eur J Biochem. 1986;156(2):327–333.

Ma X, Wong SW, Zhou P, Chaulagain CP, Doshi P, Klein AK, et al. Daratumumab binds to mobilized CD34+ cells of myeloma patients in vitro without cytotoxicity or impaired progenitor cell growth. Exp Hematol Oncol. 2018;7:27.

Moreno L, Perez C, Zabaleta A, Manrique I, Alignani D, Ajona D, et al. The mechanism of action of the anti‐CD38 monoclonal antibody isatuximab in multiple myeloma. Clin Cancer Res. 2019;25(10):3176–3187.

Zhu C, Song Z, Wang A, Srinivasan S, Yang G, Greco R, et al. Isatuximab acts through fc‐dependent, independent, and direct pathways to kill multiple myeloma cells. Front Immunol. 2020;11:1771.

Abdallah N, Murray D, Dispenzieri A, Kapoor P, Gertz MA, Lacy MQ, et al. Tracking daratumumab clearance using mass spectrometry: implications on M protein monitoring and reusing daratumumab. Leukemia. 2022;36(5):1426–1428.

Vermeulen M, Le Pesteur F, Gagnerault MC, Mary JY, Sainteny F, Lepault F. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood. 1998;92(3):894–900.

Bellucci R, De Propris MS, Buccisano F, Lisci A, Leone G, Tabilio A, et al. Modulation of VLA‐4 and L‐selectin expression on normal CD34+ cells during mobilization with G‐CSF. Bone Marrow Transplant. 1999;23(1):1–8.

Funaro A, Malavasi F. Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker. J Biol Regul Homeost Agents. 1999;13(1):54–61.

Mele S, Devereux S, Pepper AG, Infante E, Ridley AJ. Calcium‐RasGRP2‐Rap1 signaling mediates CD38‐induced migration of chronic lymphocytic leukemia cells. Blood Adv. 2018;2(13):1551–1561.

Vaisitti T, Aydin S, Rossi D, Cottino F, Bergui L, D'Arena G, et al. CD38 increases CXCL12‐mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia. 2010;24(5):958–969.

Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, et al. Human CD38 (ADP‐ribosyl cyclase) is a counter‐receptor of CD31, an Ig superfamily member. J Immunol. 1998;160(1):395–402.

Akashi M, Higashi T, Masuda S, Komori T, Furuse M. A coronary artery disease‐associated gene product, JCAD/KIAA1462, is a novel component of endothelial cell‐cell junctions. Biochem Biophys Res Commun. 2011;413(2):224–229.

Colotti G, Failla CM, Lacal PM, Ungarelli M, Ruffini F, Di Micco P, et al. Neuropilin‐1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1. FEBS J. 2022;289(1):183–198.

Goel HL, Pursell B, Standley C, Fogarty K, Mercurio AM. Neuropilin‐2 regulates α6β1 integrin in the formation of focal adhesions and signaling. J Cell Sci. 2012;125(2):497–506.

Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, et al. ITGA3 is associated with immune cell infiltration and serves as a favorable prognostic biomarker for breast cancer. Front Oncol. 2021;11:658547.

Leavesley DI, Oliver JM, Swart BW, Berndt MC, Haylock DN, Simmons PJ. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen‐4 integrin of human CD34+ hemopoietic progenitor cells. J Immunol. 1994;153(10):4673–4683.

Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS. The VLA4/VCAM‐1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A. 1995;92(21):9647–9651.

Balise VD, Saito‐Reis CA, Gillette JM. Tetraspanin scaffold proteins function as key regulators of hematopoietic stem cells. Front Cell Dev Biol. 2020;8:598.

Huang Y, Sook‐Kim M, Ratovitski E. Midkine promotes tetraspanin‐integrin interaction and induces FAK‐Stat1alpha pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells. Biochem Biophys Res Commun. 2008;377(2):474–478.

Watanabe T, Dave B, Heimann DG, Jackson JD, Kessinger A, Talmadge JE. Cell adhesion molecule expression on CD34+ cells in grafts and time to myeloid and platelet recovery after autologous stem cell transplantation. Exp Hematol. 1998;26(1):10–18.

Shpall EJ, Champlin R, Glaspy JA. Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant. 1998;4(2):84–92.

Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA, et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post‐peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia. 2007;21(9):2035–2042.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...