Insights into environmental caffeine contamination in ecotoxicological biomarkers and potential health effects of Danio rerio
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
37809478
PubMed Central
PMC10559286
DOI
10.1016/j.heliyon.2023.e19875
PII: S2405-8440(23)07083-4
Knihovny.cz E-resources
- Keywords
- Biomarkers, Caffeine, Chronic exposure, Zebrafish,
- Publication type
- Journal Article MeSH
Caffeine (CAF) exposures have been shown to cause several pharmacological and biological effects in target and non-target organisms. Although there are already several ecotoxicological studies with CAF in non-target organisms, they are focused on marine organisms, with relevant concentrations in these ecosystems, therefore, less ecologically relevant to freshwater ecosystems (the main ecoreceptor of this type of anthropogenic contaminant). The present study aimed to assess the chronic effects (28 days) of sub-lethal and environmentally relevant concentrations of CAF (0.16, 0.42, 1.09, 2.84, 7.40, 19.23, and 50 μg/L) in Danio rerio. Biochemical endpoints as biomarkers of antioxidant defense, biotransformation, lipid peroxidation, energy sources, and neurotransmission were assessed. CAF exposure induced alterations in antioxidant defenses (superoxide dismutase and glutathione reductase activities, and glutathione content) preventing lipid peroxidation. Lactate dehydrogenase activity decreased in all the concentrations tested, while acetylcholinesterase activity was only affected by the highest concentrations tested (19.23 and 50 μg/L). We also utilized a multi-biomarker approach (Integrated Biomarker Response version 2, IBRv2) to investigate the effects of CAF in the dispersion scope of individual biochemical responses of D. rerio. IBRv2 showed that the concentration of 50 μg/L promotes the highest stress. However, the results showed that CAF induced disturbances in the metabolic pathways studied in D. rerio. These results demonstrated the toxic effects of CAF on freshwater fish, compromising their physiological functions and evidencing the need for monitoring the residues of CAF released into the inland aquatic environments. Furthermore, this research evidence that phylogenetically and physiologically different species may present different biological responses with concern for ecologically relevant environmental conditions. In this sense, the present study generated ecotoxicologically relevant data, that can be considered by environment regulators, since the here-endpoints evaluated showed sensitivity and consistency in the evaluation of caffeine risks in freshwater environments.
See more in PubMed
Buerge I.J., Poiger T., Müller M.D., Buser H.R. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 2003;37:691–700. doi: 10.1021/ES020125Z. PubMed DOI
Ferreira A.P., de Lourdes C., da Cunha N. Anthropic pollution in aquatic environment: Development of a caffeine indicator. Int. J. Environ. Health Res. 2005;15:303–311. doi: 10.1080/09603120500155898. PubMed DOI
Verster J.C., Koenig J. Caffeine intake and its sources: a review of national representative studies. Food Sci. Nutr. 2017;58:1250–1259. doi: 10.1080/10408398.2016.1247252. PubMed DOI
Zarrelli A., DellaGreca M., Iesce M.R., Lavorgna M., Temussi F., Schiavone L., Criscuolo E., Parrella A., Previtera L., Isidori M. Ecotoxicological evaluation of caffeine and its derivatives from a simulated chlorination step. Sci. Total Environ. 2014:453–458. doi: 10.1016/J.SCITOTENV.2013.10.005. 470–471. PubMed DOI
dos Santos J.A., Quadra G.R., Almeida R.M., Soranço L., Lobo H., Rocha V.N., Bialetzki A., Reis J.L., Roland F., Barros N. Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish. Ecotoxicology. 2022;31:161–167. doi: 10.1007/S10646-021-02498-Z. PubMed DOI
Li S., He B., Wang J., Liu J., Hu X. Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program. Chemosphere. 2020:243. doi: 10.1016/J.CHEMOSPHERE.2019.125343. PubMed DOI
Vieira L.R., Soares A.M.V.M., Freitas R. Caffeine as a contaminant of concern: a review on concentrations and impacts in marine coastal systems. Chemosphere. 2022;286 doi: 10.1016/J.CHEMOSPHERE.2021.131675. PubMed DOI
Abdelkader T.S., Chang S.N., Kim T.H., Song J., Kim D.S., Park J.H. Exposure time to caffeine affects heartbeat and cell damage-related gene expression of zebrafish Danio rerio embryos at early developmental stages. J. Appl. Toxicol. 2013;33:1277–1283. doi: 10.1002/JAT.2787. PubMed DOI
Edwards Q.A., Sultana T., Kulikov S.M., Garner-O’Neale L.D., Yargeau V., Metcalfe C.D. Contaminants of emerging concern in wastewaters in Barbados, west indies. Bull. Environ. Contam. Toxicol. 2018;101:1–6. doi: 10.1007/S00128-018-2346-0. PubMed DOI
Zhou B., Ma C., Wang H., Xia T. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiol. 2018;18 doi: 10.1186/S12866-018-1194-8. PubMed DOI PMC
Korekar G., Kumar A., Ugale C. Occurrence, fate, persistence and remediation of caffeine: a review. Environ. Sci. Pollut. Control Ser. 2020;27:34715–34733. doi: 10.1007/S11356-019-06998-8. PubMed DOI
Luo Z., Tu Y., Li H., Qiu B., Liu Y., Yang Z. Endocrine-disrupting compounds in the Xiangjiang River of China: spatio-temporal distribution, source apportionment, and risk assessment. Ecotoxicol. Environ. Saf. 2019;167:476–484. doi: 10.1016/J.ECOENV.2018.10.053. PubMed DOI
Paíga P., Delerue-Matos C. Anthropogenic contamination of Portuguese coastal waters during the bathing season: assessment using caffeine as a chemical marker. Mar. Pollut. Bull. 2017;120:355–363. doi: 10.1016/J.MARPOLBUL.2017.05.030. PubMed DOI
Ismail N.A.H., Wee S.Y., Kamarulzaman N.H., Aris A.Z. Quantification of multi-classes of endocrine-disrupting compounds in estuarine water. Environ. Pollut. 2019;249:1019–1028. doi: 10.1016/J.ENVPOL.2019.03.089. PubMed DOI
Rizzi C., Seveso D., Galli P., Villa S. First record of emerging contaminants in sponges of an inhabited island in the Maldives. Mar. Pollut. Bull. 2020;156 doi: 10.1016/J.MARPOLBUL.2020.111273. PubMed DOI
Ali A.M., Rønning H.T., Sydnes L.K., Alarif W.M., Kallenborn R., Al-Lihaibi S.S. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea. Sci. Total Environ. 2018;621:654–662. doi: 10.1016/J.SCITOTENV.2017.11.298. PubMed DOI
Nödler K., Licha T., Bester K., Sauter M. Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J. Chromatogr. A. 2010;1217:6511–6521. doi: 10.1016/J.CHROMA.2010.08.048. PubMed DOI
Baker D.R., Kasprzyk-Hordern B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci. Total Environ. 2013;454–455:442–456. doi: 10.1016/J.SCITOTENV.2013.03.043. PubMed DOI
Li S., Wen J., He B., Wang J., Hu X., Liu J. Occurrence of caffeine in the freshwater environment: implications for ecopharmacovigilance. Environ. Pollut. 2020;263 doi: 10.1016/J.ENVPOL.2020.114371. PubMed DOI
Weigel S., Kuhlmann J., Hühnerfuss H. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci. Total Environ. 2002;295:131–141. doi: 10.1016/S0048-9697(02)00064-5. PubMed DOI
Loos R., Tavazzi S., Paracchini B., Canuti E., Weissteiner C. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument. Anal. Bioanal. Chem. 2013;405:5875–5885. doi: 10.1007/S00216-013-6944-8/TABLES/1. PubMed DOI
Gaffney V. de J., Almeida C.M.M., Rodrigues A., Ferreira E., Benoliel M.J., Cardoso V.V. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 2014;72:199–208. doi: 10.1016/j.watres.2014.10.027. PubMed DOI
Cerveny D., Cisar P., Brodin T., McCallum E.S., Fick J. Environmentally relevant concentration of caffeine—effect on activity and circadian rhythm in wild perch. Environ. Sci. Pollut. Control Ser. 2022;1:1–9. doi: 10.1007/S11356-022-19583-3/FIGURES/2. PubMed DOI PMC
Maier D., Blaha L., Giesy J.P., Henneberg A., Köhler H.R., Kuch B., Osterauer R., Peschke K., Richter D., Scheurer M., Triebskorn R. Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Res. 2015;72:127–144. doi: 10.1016/J.WATRES.2014.08.050. PubMed DOI
Oliveira T.S., Murphy M., Mendola N., Wong V., Carlson D., Waring L. Characterization of pharmaceuticals and personal care products in hospital effluent and wastewater influent/effluent by direct-injection LC-MS-MS. Sci. Total Environ. 2015:459–478. doi: 10.1016/j.scitotenv.2015.02.104. 518–519. PubMed DOI
Muñoz-Peñuela M., Moreira R.G., Gomes A.D.O., Tolussi C.E., Branco G.S., Pinheiro J.P.S., Zampieri R.A., Lo Nostro F.L. Neurotoxic, biotransformation, oxidative stress and genotoxic effects in Astyanax altiparanae (Teleostei, Characiformes) males exposed to environmentally relevant concentrations of diclofenac and/or caffeine. Environ. Toxicol. Pharmacol. 2022;91 doi: 10.1016/J.ETAP.2022.103821. PubMed DOI
Adeleye A.S., Xue J., Zhao Y., Taylor A.A., Zenobio J.E., Sun Y., Han Z., Salawu O.A., Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard Mater. 2022;424 doi: 10.1016/J.JHAZMAT.2021.127284. PubMed DOI
Yang X., Chen F., Meng F., Xie Y., Chen H., Young K., Luo W., Ye T., Fu W. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ. Sci. Pollut. Control Ser. 2013;20:5864–5875. doi: 10.1007/S11356-013-1641-X. PubMed DOI
Santos-Silva T.G., Montagner C.C., Martinez C.B.R. Evaluation of caffeine effects on biochemical and genotoxic biomarkers in the neotropical freshwater teleost Prochilodus lineatus. Environ. Toxicol. Pharmacol. 2018;58:237–242. doi: 10.1016/J.ETAP.2018.02.002. PubMed DOI
Zhang Z., Peng Q., Huo D., Jiang S., Ma C., Chang H., Chen K., Li C., Pan Y., Zhang J. Melatonin regulates the neurotransmitter secretion disorder induced by caffeine through the microbiota-gut-brain Axis in zebrafish (Danio rerio) Front. Cell Dev. Biol. 2021;9 doi: 10.3389/FCELL.2021.678190. PubMed DOI PMC
OECD . 2002. Caffeine - OECD Existing Chemicals Database.
Zhou S., Chen Q., di Paolo C., Shao Y., Hollert H., Seiler T.B. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. Sci. Total Environ. 2019;664:89–98. doi: 10.1016/J.SCITOTENV.2019.01.300. PubMed DOI
Nunes B., Santos J., Dionísio R., Dias de Alkimin G. Investigation of potential behavioral and physiological effects of caffeine on D. magna. Environ. Sci. Pollut. Control Ser. 2022;29:43237–43250. doi: 10.1007/S11356-022-18695-0. PubMed DOI
Pires A., Almeida Â., Calisto V., Schneider R.J., Esteves V.I., Wrona F.J., Soares A.M.V.M., Figueira E., Freitas R. Hediste diversicolor as bioindicator of pharmaceutical pollution: results from single and combined exposure to carbamazepine and caffeine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016;188:30–38. doi: 10.1016/J.CBPC.2016.06.003. PubMed DOI
Aguirre-Martínez G.V., Del Valls T.A., Martín-Díaz M.L. Identification of biomarkers responsive to chronic exposure to pharmaceuticals in target tissues of Carcinus maenas. Mar. Environ. Res. 2013:87–88. doi: 10.1016/J.MARENVRES.2013.02.011. 1–11. PubMed DOI
Maranho L.A., Moreira L.B., Baena-Nogueras R.M., Lara-Martín P.A., DelValls T.A., Martín-Díaz M.L. A candidate short-term toxicity test using Ampelisca brevicornis to assess sublethal responses to pharmaceuticals bound to marine sediments. Arch. Environ. Contam. Toxicol. 2015;68:237–258. doi: 10.1007/S00244-014-0080-0/TABLES/4. PubMed DOI
Aguirre-Martínez G.V., Owuor M.A., Garrido-Pérez C., Salamanca M.J., Del Valls T.A., Martín-Díaz M.L. Are standard tests sensitive enough to evaluate effects of human pharmaceuticals in aquatic biota? Facing changes in research approaches when performing risk assessment of drugs. Chemosphere. 2015;120:75–85. doi: 10.1016/J.CHEMOSPHERE.2014.05.087. PubMed DOI
Glazier D. Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals. Biol. Rev. 2005;80:611–662. doi: 10.1017/S1464793105006834. PubMed DOI
Rodrigues S., Antunes S.C., Correia A.T., Nunes B. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. Environ. Sci. Pollut. Control Ser. 2019;26:227–239. doi: 10.1007/S11356-018-3494-9. PubMed DOI
Rodrigues S., Antunes S.C., Correia A.T., Golovko O., Žlábek V., Nunes B. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere. 2019;216:234–247. doi: 10.1016/J.CHEMOSPHERE.2018.10.124. PubMed DOI
Mirasole C., di Carro M., Tanwar S., Magi E. Liquid chromatography–tandem mass spectrometry and passive sampling: powerful tools for the determination of emerging pollutants in water for human consumption. J. Mass Spectrom. 2016:814–820. doi: 10.1002/JMS.3813. PubMed DOI
EPA . CCID; 2022. Caffeine - Chemical Classification and Information Database.
ECHA Caffeine - substance information. 2022. https://echa.europa.eu/pt/substance-information/-/substanceinfo/100.000.329
Aguirre-Martínez G.V., DelValls A.T., Laura Martín-Díaz M. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774) Ecotoxicol. Environ. Saf. 2015;120:142–154. doi: 10.1016/J.ECOENV.2015.05.036. PubMed DOI
Aguirre-Martínez G.V., DelValls T.A., Martín-Díaz M.L. General stress, detoxification pathways, neurotoxicity and genotoxicity evaluated in Ruditapes philippinarum exposed to human pharmaceuticals. Ecotoxicol. Environ. Saf. 2016;124:18–31. doi: 10.1016/J.ECOENV.2015.09.031. PubMed DOI
Cruz D., Almeida Â., Calisto V., Esteves V.I., Schneider R.J., Wrona F.J., Soares A.M.V.M., Figueira E., Freitas R. Caffeine impacts in the clam Ruditapes philippinarum: alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere. 2016;160:95–103. doi: 10.1016/J.CHEMOSPHERE.2016.06.068. PubMed DOI
Aguirre-Martínez G.V., André C., Gagné F., Martín-Díaz L.M. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. Ecotoxicol. Environ. Saf. 2018;148:652–663. doi: 10.1016/J.ECOENV.2017.09.042. PubMed DOI
Pires A., Almeida Â., Calisto V., Schneider R.J., Esteves V.I., Wrona F.J., Soares A.M.V.M., Figueira E., Freitas R. Long-term exposure of polychaetes to caffeine: biochemical alterations induced in Diopatra neapolitana and Arenicola marina. Environ. Pollut. 2016;214:456–463. doi: 10.1016/J.ENVPOL.2016.04.031. PubMed DOI
OECD . Juvenile Growth Test; 2000. Fish. Test No. 215. DOI
Wilson J., Bunte R., Carty A. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio) JAALAS. 2009;48:785–789. https://www.ingentaconnect.com/content/aalas/jaalas/2009/00000048/00000006/art00013 PubMed PMC
Rodrigues S., Antunes S.C., Nunes B., Correia A.T. Histological alterations in gills and liver of rainbow trout (Oncorhynchus mykiss) after exposure to the antibiotic oxytetracycline. Environ. Toxicol. Pharmacol. 2017;53:164–176. doi: 10.1016/J.ETAP.2017.05.012. PubMed DOI
Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território. 2013. Decreto-Lei no 113/2013 de 7 de maio.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Flohé L., ötting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104. doi: 10.1016/S0076-6879(84)05013-8. PubMed DOI
Aebi H. Catalase in vitro. Methods Enzymol. 1984;6:105–121. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI
Flohé L., Günzler W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–120. doi: 10.1016/S0076-6879(84)05015-1. PubMed DOI
Carlberg I., Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–490. doi: 10.1016/S0076-6879(85)13062-4. PubMed DOI
Soares C., Pereira R., Spormann S., Fidalgo F. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? - evaluation of oxidative damage and antioxidant responses in tomato. Environ. Pollut. 2019;247:256–265. doi: 10.1016/J.ENVPOL.2019.01.063. PubMed DOI
Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. doi: 10.1016/S0021-9258(19)42083-8. PubMed DOI
Buege J.A., Aust S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/S0076-6879(78)52032-6. PubMed DOI
Lo S., Russell J.C., Taylor A.W. Determination of glycogen in small tissue samples. J. Appl. Physiol. 1970;28:234–236. doi: 10.1152/jappl.1970.28.2.234. PubMed DOI
Folch J., Lees M., Sloane SGH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed
Vassault A. Methods of Enzymatic Analysis. 1983. Lactate dehydrogenase, UV-method with pyruvate and NADH; pp. 118–126.
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Beliaeff B., Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002;21:1316–1322. doi: 10.1002/ETC.5620210629. PubMed DOI
Sanchez W., Burgeot T., Porcher J.M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Control Ser. 2013;20:2721–2725. doi: 10.1007/S11356-012-1359-1/TABLES/2. PubMed DOI
Liu R., Gang L., Shen X., Xu H., Wu F., Sheng L. Binding characteristics and superimposed antioxidant properties of caffeine combined with superoxide dismutase. ACS Omega. 2019;4:17417–17424. doi: 10.1021/ACSOMEGA.9B02205/ASSET/IMAGES/MEDIUM/AO9B02205_M008.GIF. PubMed DOI PMC
Li Z., Lu G., Yang X., Wang C. Single and combined effects of selected pharmaceuticals at sublethal concentrations on multiple biomarkers in Carassius auratus. Ecotoxicology. 2012;21:353–361. doi: 10.1007/S10646-011-0796-9/FIGURES/5. PubMed DOI
Nie X., Liu B., Yu H., Liu W., Yang Y. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 2013;172:23–32. doi: 10.1016/j.envpol.2012.08.013. PubMed DOI
Gröner F., Ziková A., Kloas W. Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus) Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015;167:51–57. doi: 10.1016/j.cbpc.2014.09.003. PubMed DOI
Rodrigues S., Silva A.M., Antunes S.C. Assessment of 17α-ethinylestradiol effects in Daphnia magna: life-history traits, biochemical and genotoxic parameters. Environ. Sci. Pollut. Control Ser. 2021;28:23160–23173. doi: 10.1007/S11356-020-12323-5. PubMed DOI
Burdan F. 2015. Pharmacology of Caffeine: the Main Active Compound of Coffee, Coffee in Health and Disease Prevention; pp. 823–829. DOI
Singh P., Kesharwani R.K., Keservani R.K. 2017. Protein, Carbohydrates, and Fats: Energy Metabolism, Sustained Energy for Enhanced Human Functions and Activity; pp. 103–115. DOI
Smolders R., Boeck G., Blust R. Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio) Environ. Toxicol. Chem. 2009;22:890–899. doi: 10.1002/ETC.5620220429. PubMed DOI
Quan H.Y., Kim D.Y., Chung S.H. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep. 2013;46:207–212. doi: 10.5483/BMBREP.2013.46.4.153. PubMed DOI PMC
Acheson K.J., Gremaud G., Meirim I., Montigon F., Krebs Y., Fay L.B., Gay L.J., Schneiter P., Schindler C., Tappy L. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am. J. Clin. Nutr. 2004;79:40–46. doi: 10.1093/AJCN/79.1.40. PubMed DOI
Ambili T.R., Saravanan M., Ramesh M., Abhijith D.B., Poopal R.K. Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch. Environ. Contam. Toxicol. 2013;64:494–503. doi: 10.1007/S00244-012-9836-6. PubMed DOI
Gardiner N.S., Whiteley C.G. The interaction and inhibition of muscle lactate dehydrogenase by the alkaloid caffeine. Biochem. Biophys. Res. Commun. 1985;127:1057–1065. doi: 10.1016/S0006-291X(85)80052-8. PubMed DOI
da Silva Santos N., Oliveira R., Lisboa C.A., Mona e Pinto J., Sousa-Moura D., Camargo N.S., Perillo V., Oliveira M., Grisolia C.K., Domingues I. Chronic effects of carbamazepine on zebrafish: behavioral, reproductive and biochemical endpoints. Ecotoxicol. Environ. Saf. 2018;164:297–304. doi: 10.1016/J.ECOENV.2018.08.015. PubMed DOI
Domingues I., Oliveira R., Lourenço J., Grisolia C.K., Mendo S., Soares A.M.V.M. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010;152:338–345. doi: 10.1016/J.CBPC.2010.05.010. PubMed DOI
Nunes B. The use of cholinesterases in ecotoxicology. Rev. Environ. Contam. Toxicol. 2011;212:29–59. doi: 10.1007/978-1-4419-8453-1_2. PubMed DOI
Fiani B., Zhu L., Musch B.L., Briceno S., Andel R., Sadeq N., Ansari A.Z. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus. 2021;13 doi: 10.7759/CUREUS.15032. PubMed DOI PMC
Pohanka M., Dobes P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci. 2013;14:9873. doi: 10.3390/IJMS14059873. PubMed DOI PMC
Ruiz-Oliveira J., Silva P.F., Luchiari A.C. Coffee time: low caffeine dose promotes attention and focus in zebrafish. Learn. Behav. 2019;47:227–233. doi: 10.3758/s13420-018-0369-3. PubMed DOI
Haskell-Ramsay C.F., Jackson P.A., Forster J.S., Dodd F.L., Bowerbank S.L., Kennedy D.O. The acute effects of caffeinated black coffee on cognition and mood in Healthy Young and Older Adults. Nutrients. 2018;10 doi: 10.3390/NU10101386. PubMed DOI PMC
Farias N.O., de Sousa Andrade T., Santos V.L., Galvino P., Suares-Rocha P., Domingues I., Grisolia C.K., Oliveira R. Neuromotor activity inhibition in zebrafish early-life stages after exposure to environmental relevant concentrations of caffeine. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56:1306–1315. doi: 10.1080/10934529.2021.1989931. PubMed DOI
Karadsheh N., Kussie P., Linthicum D.S. Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol. Lett. 1991;55:335–342. doi: 10.1016/0378-4274(91)90015-X. PubMed DOI
Fabiani C., Murray A.P., Corradi J., Antollini S.S. A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacology. 2018;135:464–473. doi: 10.1016/J.NEUROPHARM.2018.03.041. PubMed DOI
Pinto J., Costa M., Leite C., Borges C., Coppola F., Henriques B., Monteiro R., Russo T., di Cosmo A., Soares A.M.V.M., Polese G., Pereira E., Freitas R. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: biochemical and histopathological impacts. Aquat. Toxicol. 2019;211:181–192. doi: 10.1016/J.AQUATOX.2019.03.017. PubMed DOI
Si W., He X., Li A., Liu L., Li J., Gong D., Liu J., Liu J., Shen W., Zhang X. Application of an integrated biomarker response index to assess groundwater contamination in the vicinity of a rare earth mine tailings site. Environ. Sci. Pollut. Res. Int. 2016;23:17345–17356. doi: 10.1007/S11356-016-6728-8. PubMed DOI
Caliani I., Campani T., Conti B., Cosci F., Bedini S., D'Agostino A., Giovanetti L., di Noi A., Casini S. First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. Environ. Sci. Pollut. Control Ser. 2021;28:47418–47428. doi: 10.1007/S11356-021-14037-8/FIGURES/2. PubMed DOI PMC