The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations

. 2022 Jun 28 ; 7 (3) : e0007222. [epub] 20220509

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35532210

Honey bees are globally important pollinators threatened by many different pathogens, including viruses. We investigated the virome of honey bees collected at the end of the beekeeping season (August/September) in Czechia, a Central European country. Samples were examined in biological replicates to assess the homogeneity, stability, and composition of the virome inside a single hive. By choice of healthy workers from colonies, where Varroa destructor was under control, we could identify ubiquitous bee viruses. Deformed wing virus (DWV) was highly prevalent, even though the bees were healthy, without any noticeable disease signs. The overall virome composition (consisting of honey bee-, plant-, and bacterium-infecting viruses) was driven primarily by the hive and its location. However, honey bee-specific viruses showed an uneven distribution within the same hive. In addition, our results point to an unusual cooccurrence between two rhabdoviruses and reveal the presence of five distinct lineages of Lake Sinai viruses (LSVs) clustering with other LSV strains described globally. Comparison of our results with the virome of Australian honey bees, the last truly Varroa- and DWV-free population, showed a strong difference with respect to DWV and a set of diverse members of the Picornavirales, of which the latter were absent in our samples. We hypothesize that the occurrence of DWV introduced by Varroa strongly affects the virome structure despite the mite being under control. IMPORTANCE The Western honey bee, Apis mellifera, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping. In this study, we examined healthy bees from the heart of Central Europe, where honey bee colonies have been commonly affected by varroosis over 5 decades. Our virome analysis showed the presence of ubiquitous viruses in colonies where the mite Varroa destructor was under control and no honey bee disease signs were observed. Compared to previous studies, an important part of our study was the analysis of multiple replicates from individual hives. Our overall results indicate that the virome structure (including bee-infecting viruses, plant-infecting viruses, and bacteriophages) is stable within hives; however, the bee-infecting viruses varied largely within interhive replicates, suggesting variation of honey bee viruses within individual bees. Of interest was the striking difference between the viromes of our 39 pools and 9 pools of honey bee viromes previously analyzed in Australia. It could be suggested that Varroa not only affects DWV spread in bee colonies but also affects diverse members of the Picornavirales, which were strongly decreased in Czech bees compared to the Varroa- and DWV-naive Australian bees.

Zobrazit více v PubMed

Schmidt JO. 1997. Bee products, p 15–26. In Mizrahi A, Lensky Y (ed), Bee products: properties, applications, and apitherapy. Springer, Boston, MA.

Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313. doi:10.1098/rspb.2006.3721. PubMed DOI PMC

Calderone NW. 2012. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009. PLoS One 7:e37235. doi:10.1371/journal.pone.0037235. PubMed DOI PMC

Hung K-LJ, Kingston JM, Albrecht M, Holway DA, Kohn JR. 2018. The worldwide importance of honey bees as pollinators in natural habitats. Proc Biol Sci 285:20172140. doi:10.1098/rspb.2017.2140. PubMed DOI PMC

Neumann P, Carreck NL. 2010. Honey bee colony losses. J Apic Res 49:1–6. doi:10.3896/IBRA.1.49.1.01. DOI

Gray A, Adjlane N, Arab A, Ballis A, Brusbardis V, Charrière J-D, Chlebo R, Coffey MF, Cornelissen B, da Costa CA, Dahle B, Danihlík J, Dražić MM, Evans G, Fedoriak M, Forsythe I, Gajda A, de Graaf DC, Gregorc A, Ilieva I, Johannesen J, Kauko L, Kristiansen P, Martikkala M, Martín-Hernández R, Medina-Flores CA, Mutinelli F, Patalano S, Raudmets A, Martin GS, Soroker V, Stevanovic J, Uzunov A, Vejsnaes F, Williams A, Zammit-Mangion M, Brodschneider R. 2020. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018-2019, and the effects of a new queen on the risk of colony winter loss. J Apic Res 59:744–751. doi:10.1080/00218839.2020.1797272. DOI

vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS. 2009. Colony collapse disorder: a descriptive study. PLoS One 4:e6481. doi:10.1371/journal.pone.0006481. PubMed DOI PMC

Anderson DL, Trueman J. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24:165–189. doi:10.1023/A:1006456720416. PubMed DOI

Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, vanEngelsdorp D, Evans JD. 2012. Pathogen webs in collapsing honey bee colonies. PLoS One 7:e43562. doi:10.1371/journal.pone.0043562. PubMed DOI PMC

De la Rúa P, Jaffé R, Dall’Olio R, Muñoz I, Serrano J. 2009. Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284. doi:10.1051/apido/2009027. DOI

Möckel N, Gisder S, Genersch E. 2011. Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J Gen Virol 92:370–377. doi:10.1099/vir.0.025940-0. PubMed DOI

Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, Boots M. 2016. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351:594–597. doi:10.1126/science.aac9976. PubMed DOI

Brødsgaard CJ, Ritter W, Hansen H, Brødsgaard HF. 2000. Interactions among Varroa jacobsoni mites, acute paralysis virus, and Paenibacillus larvae larvae and their influence on mortality of larval honeybees in vitro. Apidologie 31:543–554. doi:10.1051/apido:2000145. DOI

Martin SJ. 2001. The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38:1082–1093. doi:10.1046/j.1365-2664.2001.00662.x. DOI

Francis RM, Nielsen SL, Kryger P. 2013. Varroa-virus interaction in collapsing honey bee colonies. PLoS One 8:e57540. doi:10.1371/journal.pone.0057540. PubMed DOI PMC

Roberts JMK, Anderson DL, Durr PA. 2018. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J Gen Virol 99:818–826. doi:10.1099/jgv.0.001073. PubMed DOI

Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC. 2012. Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306. doi:10.1126/science.1220941. PubMed DOI

Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, Mead A, Burroughs N, Evans DJ. 2014. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog 10:e1004230. doi:10.1371/journal.ppat.1004230. PubMed DOI PMC

Posada-Florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, Evans JD, Ryabov EV. 2019. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci Rep 9:12445. doi:10.1038/s41598-019-47447-3. PubMed DOI PMC

Norton AM, Remnant EJ, Buchmann G, Beekman M. 2020. Accumulation and competition amongst deformed wing virus genotypes in naïve Australian honeybees provides insight into the increasing global prevalence of genotype B. Front Microbiol 11:620. doi:10.3389/fmicb.2020.00620. PubMed DOI PMC

Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. 2021. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 90:2254–2267. doi:10.1111/1365-2656.13493. PubMed DOI

Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. 2015. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. doi:10.1111/1462-2920.12426. PubMed DOI

Martin SJ, Hardy J, Villalobos E, Martín‐Hernández R, Nikaido S, Higes M. 2013. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep 5:506–510. doi:10.1111/1758-2229.12052. PubMed DOI PMC

McMenamin AJ, Genersch E. 2015. Honey bee colony losses and associated viruses. Curr Opin Insect Sci 8:121–129. doi:10.1016/j.cois.2015.01.015. PubMed DOI

McMenamin AJ, Flenniken ML. 2018. Recently identified bee viruses and their impact on bee pollinators. Curr Opin Insect Sci 26:120–129. doi:10.1016/j.cois.2018.02.009. PubMed DOI

Galbraith DA, Fuller ZL, Ray AM, Brockmann A, Frazier M, Gikungu MW, Martinez JFI, Kapheim KM, Kerby JT, Kocher SD, Losyev O, Muli E, Patch HM, Rosa C, Sakamoto JM, Stanley S, Vaudo AD, Grozinger CM. 2018. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci Rep 8:8879. doi:10.1038/s41598-018-27164-z. PubMed DOI PMC

Bonilla-Rosso G, Steiner T, Wichmann F, Bexkens E, Engel P. 2020. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. Proc Natl Acad Sci USA 117:7355–7362. doi:10.1073/pnas.2000228117. PubMed DOI PMC

Deboutte W, Beller L, Yinda CK, Maes P, de Graaf DC, Matthijnssens J. 2020. Honey-bee-associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proc Natl Acad Sci USA 117:10511–10519. doi:10.1073/pnas.1921859117. PubMed DOI PMC

Remnant EJ, Shi M, Buchmann G, Blacquière T, Holmes EC, Beekman M, Ashe A. 2017. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol 91:e00158-17. doi:10.1128/JVI.00158-17. PubMed DOI PMC

Levin S, Sela N, Erez T, Nestel D, Pettis J, Neumann P, Chejanovsky N. 2019. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses 11:94. doi:10.3390/v11020094. PubMed DOI PMC

Martin SJ, Brettell LE. 2019. Deformed wing virus in honeybees and other insects. Annu Rev Virol 6:49–69. doi:10.1146/annurev-virology-092818-015700. PubMed DOI

Alger SA, Burnham PA, Boncristiani HF, Brody AK. 2019. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS One 14:e0217822. doi:10.1371/journal.pone.0217822. PubMed DOI PMC

Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. 2020. Diversity and global distribution of viruses of the Western honey bee, Apis mellifera. Insects 11:239. doi:10.3390/insects11040239. PubMed DOI PMC

Deboutte W, Beller L, Yinda CK, Shi C, Smets L, Vanmechelen B, Conceição-Neto N, Dallmeier K, Maes P, de Graaf DC, Matthijnssens J. 2020. Hymenoptera associated eukaryotic virome lacks host specificity. bioRxiv 10.1101/2020.09.15.298042. DOI

Levin S, Sela N, Chejanovsky N. 2016. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci Rep 6:37710. doi:10.1038/srep37710. PubMed DOI PMC

Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209. doi:10.1186/1471-2105-8-209. PubMed DOI PMC

Pourcel C, Touchon M, Villeriot N, Vernadet J-P, Couvin D, Toffano-Nioche C, Vergnaud G. 2020. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res 48:D535–D544. doi:10.1093/nar/gkz915. PubMed DOI PMC

Bowen-Walker PL, Martin SJ, Gunn A. 1999. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol 73:101–106. doi:10.1006/jipa.1998.4807. PubMed DOI

Roberts JMK, Anderson DL, Durr PA. 2017. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci Rep 7:6925. doi:10.1038/s41598-017-07290-w. PubMed DOI PMC

Gauthier L, Tentcheva D, Tournaire M, Dainat B, Cousserans F, Colin ME, Bergoin M. 2007. Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie 38:426–435. doi:10.1051/apido:2007026. DOI

Thompson HM, Brown MA, Ball RF, Bew MH. 2002. First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366. doi:10.1051/apido:2002027. DOI

Roth MA, Wilson JM, Tignor KR, Gross AD. 2020. Biology and management of Varroa destructor (Mesostigmata: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies. J Integr Pest Manag 11:1. doi:10.1093/jipm/pmz036. DOI

DaPalma T, Doonan BP, Trager NM, Kasman LM. 2010. A systematic approach to virus-virus interactions. Virus Res 149:1–9. doi:10.1016/j.virusres.2010.01.002. PubMed DOI PMC

Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, DeRisi JL. 2011. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 6:e20656. doi:10.1371/journal.pone.0020656. PubMed DOI PMC

Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, de Graaf DC. 2013. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8:e72443. doi:10.1371/journal.pone.0072443. PubMed DOI PMC

Granberg F, Vicente-Rubiano M, Rubio-Guerri C, Karlsson OE, Kukielka D, Belák S, Sánchez-Vizcaíno JM. 2013. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by aphid lethal paralysis, Israel acute paralysis and Lake Sinai viruses. PLoS One 8:e57459. doi:10.1371/journal.pone.0057459. PubMed DOI PMC

Ravoet J, De Smet L, Wenseleers T, de Graaf DC. 2015. Genome sequence heterogeneity of Lake Sinai virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host. Virus Res 201:67–72. doi:10.1016/j.virusres.2015.02.019. PubMed DOI

Daughenbaugh KF, Martin M, Brutscher LM, Cavigli I, Garcia E, Lavin M, Flenniken ML. 2015. Honey bee infecting Lake Sinai viruses. Viruses 7:3285–3309. doi:10.3390/v7062772. PubMed DOI PMC

Bailey L, Ball B, Carpenter J, Woods R. 1980. Small virus-like particles in honey bees associated with chronic paralysis virus and with a previously undescribed disease. J Gen Virol 46:149–155. doi:10.1099/0022-1317-46-1-149. DOI

de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, Chen Y-P, Gauthier L, Genersch E, de Graaf DC, Ribière M, Ryabov E, De Smet L, van der Steen JJM. 2013. Standard methods for virus research in Apis mellifera. J Apic Res 52:1–56. doi:10.3896/IBRA.1.52.4.22. DOI

Ellegaard KM, Engel P. 2019. Genomic diversity landscape of the honey bee gut microbiota. Nat Commun 10:446. doi:10.1038/s41467-019-08303-0. PubMed DOI PMC

Anjum SI, Aldakheel F, Shah AH, Khan S, Ullah A, Hussain R, Khan H, Ansari MJ, Mahmoud AH, Mohammed OB. 2021. Honey bee gut an unexpected niche of human pathogen. J King Saud Univ Sci 33:101247. doi:10.1016/j.jksus.2020.101247. DOI

Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, Yinda CK, Lavigne R, Maes P, Ranst MV, Heylen E, Matthijnssens J. 2015. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep 5:16532. doi:10.1038/srep16532. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. doi:10.1038/nmeth.3176. PubMed DOI

Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385. doi:10.1186/1471-2105-12-385. PubMed DOI PMC

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. doi:10.1093/molbev/msz189. PubMed DOI PMC

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010. PubMed DOI

Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitúa MC, Vik D, Sullivan MB, Roux S. 2021. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37. doi:10.1186/s40168-020-00990-y. PubMed DOI PMC

Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. 2021. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 39:578–585. doi:10.1038/s41587-020-00774-7. PubMed DOI PMC

Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM, Krupovic M, Lavigne R, Turner D, Sullivan MB. 2019. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 37:632–639. doi:10.1038/s41587-019-0100-8. PubMed DOI

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: community ecology package (2.5-6). https://CRAN.R-project.org/package=vegan. Accessed 20 July 2020.

Galili T, O’Callaghan A, Sidi J, Sievert C. 2018. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34:1600–1602. doi:10.1093/bioinformatics/btx657. PubMed DOI PMC

Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC

Peixoto TP. 2017. The graph-tool python library. figshare.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830.

Cornman RS. 2019. Relative abundance and molecular evolution of Lake Sinai virus (Sinaivirus) clades. PeerJ 7:e6305. doi:10.7717/peerj.6305. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...