Discovery and characterization of novel DNA viruses in Apis mellifera: expanding the honey bee virome through metagenomic analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910018; MZE-RO0423
Ministerstvo Zemědělství (Ministry of Agriculture)
LX22NPO5103
Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
SVV 260679
Charles University
101102733
EU4H Project No.101102733 (DURABLE)
PubMed
38441971
PubMed Central
PMC11019937
DOI
10.1128/msystems.00088-24
Knihovny.cz E-zdroje
- Klíčová slova
- honey bee, honey bee viruses, metagenomics, virome, virus discovery,
- MeSH
- DNA viry genetika MeSH
- ekosystém MeSH
- metagenom genetika MeSH
- Nudiviridae * MeSH
- včely MeSH
- virom genetika MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To date, many viruses have been discovered to infect honey bees. In this study, we used high-throughput sequencing to expand the known virome of the honey bee, Apis mellifera, by identifying several novel DNA viruses. While the majority of previously identified bee viruses are RNA, our study reveals nine new genomes from the Parvoviridae family, tentatively named Bee densoviruses 1 to 9. In addition, we characterized a large DNA virus, Apis mellifera filamentous-like virus (AmFLV), which shares limited protein identities with the known Apis mellifera filamentous virus. The complete sequence of AmFLV, obtained by a combination of laboratory techniques and bioinformatics, spans 152,678 bp. Linear dsDNA genome encodes for 112 proteins, of which 49 are annotated. Another large virus we discovered is Apis mellifera nudivirus, which belongs to a group of Alphanudivirus. The virus has a length of 129,467 bp and a circular dsDNA genome, and has 106 protein encoding genes. The virus contains most of the core genes of the family Nudiviridae. This research demonstrates the effectiveness of viral binning in identifying viruses in honey bee virology, showcasing its initial application in this field.IMPORTANCEHoney bees contribute significantly to food security by providing pollination services. Understanding the virome of honey bees is crucial for the health and conservation of bee populations and also for the stability of the ecosystems and economies for which they are indispensable. This study unveils previously unknown DNA viruses in the honey bee virome, expanding our knowledge of potential threats to bee health. The use of the viral binning approach we employed in this study offers a promising method to uncovering and understanding the vast viral diversity in these essential pollinators.
Zobrazit více v PubMed
Hung K-LJ, Kingston JM, Albrecht M, Holway DA, Kohn JR. 2018. The worldwide importance of honey bees as pollinators in natural habitats. Proc Biol Sci 285:20172140. doi:10.1098/rspb.2017.2140 PubMed DOI PMC
Calderone NW. 2012. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:e37235. doi:10.1371/journal.pone.0037235 PubMed DOI PMC
Webster MT. 2019. Apis mellifera. Trends Genet 35:880–881. doi:10.1016/j.tig.2019.08.003 PubMed DOI
Wang X, Zhang X, Zhang Z, Lang H, Zheng H. 2018. Honey bee as a model organism to study gut microbiota and diseases. Drug Discov Today Dis Models 28:35–42. doi:10.1016/j.ddmod.2019.08.010 DOI
Gray A, Adjlane N, Arab A, Ballis A, Brusbardis V, Bugeja Douglas A, Cadahía L, Charrière J-D, Chlebo R, Coffey MF, et al. . 2023. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: the combined effects of operation size, migration and queen replacement. J Apic Res 62:204–210. doi:10.1080/00218839.2022.2113329 DOI
Insolia L, Molinari R, Rogers SR, Williams GR, Chiaromonte F, Calovi M. 2022. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci Rep 12. doi:10.1038/s41598-022-24946-4 PubMed DOI PMC
Hristov P, Shumkova R, Palova N, Neov B. 2020. Factors associated with honey bee colony losses: a mini-review. Vet Sci 7:166. doi:10.3390/vetsci7040166 PubMed DOI PMC
Grozinger CM, Flenniken ML. 2019. Bee viruses: ecology, pathogenicity, and impacts. Annu Rev Entomol 64:205–226. doi:10.1146/annurev-ento-011118-111942 PubMed DOI
Ullah A, Tlak Gajger I, Majoros A, Dar SA, Khan S, Kalimullah A, Nasir Khabir M, Hussain R, Khan HU, Hameed M, Anjum SI. 2021. Viral impacts on honey bee populations: a review. Saudi J Biol Sci 28:523–530. doi:10.1016/j.sjbs.2020.10.037 PubMed DOI PMC
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC. 2012. Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306. doi:10.1126/science.1220941 PubMed DOI
Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, Chantawannakul P, McAfee A. 2020. Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol 36:592–606. doi:10.1016/j.pt.2020.04.004 PubMed DOI
Fetters AM, Ashman T-L. 2023. The pollen virome: a review of pollen-associated viruses and consequences for plants and their interactions with pollinators. Am J Bot 110:e16144. doi:10.1002/ajb2.16144 PubMed DOI
Remnant EJ, Shi M, Buchmann G, Blacquière T, Holmes EC, Beekman M, Ashe A. 2017. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol 91:e00158-17. doi:10.1128/JVI.00158-17 PubMed DOI PMC
Roberts JMK, Anderson DL, Durr PA. 2018. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J Gen Virol 99:818–826. doi:10.1099/jgv.0.001073 PubMed DOI
Galbraith DA, Fuller ZL, Ray AM, Brockmann A, Frazier M, Gikungu MW, Martinez JFI, Kapheim KM, Kerby JT, Kocher SD, Losyev O, Muli E, Patch HM, Rosa C, Sakamoto JM, Stanley S, Vaudo AD, Grozinger CM. 2018. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci Rep 8:8879. doi:10.1038/s41598-018-27164-z PubMed DOI PMC
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. 2020. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11:239. doi:10.3390/insects11040239 PubMed DOI PMC
Clark TB. 1978. A filamentous virus of the honey bee. J Invertebr Pathol 32:332–340. doi:10.1016/0022-2011(78)90197-0 DOI
Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans J, de Miranda J, Neumann P. 2015. The Apis mellifera filamentous virus genome. Viruses 7:3798–3815. doi:10.3390/v7072798 PubMed DOI PMC
Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, Varsani A. 2019. Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). Infect Genet Evol 71:179–188. doi:10.1016/j.meegid.2019.03.024 PubMed DOI
Fédière G. 2000. Epidemiology and pathology of Densovirinae. Contrib Microbiol 4:1–11. doi:10.1159/000060332. PubMed DOI
Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Gatherer D, Davison AJ. 2014. The family Parvoviridae. Arch Virol 159:1239–1247. doi:10.1007/s00705-013-1914-1 PubMed DOI PMC
Pénzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hübinger AM, Hughes J, Cotmore SF, Harrach B. 2020. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Arch Virol 165:2133–2146. doi:10.1007/s00705-020-04632-4 PubMed DOI
Hartmann U, Forsgren E, Charrière J-D, Neumann P, Gauthier L. 2015. Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7:2654–2667. doi:10.3390/v7052654 PubMed DOI PMC
Kadlečková D, Tachezy R, Erban T, Deboutte W, Nunvář J, Saláková M, Matthijnssens J. 2022. The virome of healthy honey bee colonies: ubiquitous occurrence of known and new viruses in bee populations. mSystems 7:e0007222. doi:10.1128/msystems.00072-22 PubMed DOI PMC
Bailey L. 1982. Viruses of honeybees. Bee World 63:165–173. doi:10.1080/0005772X.1982.11097891 DOI
Petersen JM, Bézier A, Drezen J-M, van Oers MM. 2022. The naked truth: an updated review on nudiviruses and their relationship to bracoviruses and baculoviruses. J Invertebr Pathol 189:107718. doi:10.1016/j.jip.2022.107718 PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170 PubMed DOI PMC
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. doi:10.1101/gr.213959.116 PubMed DOI PMC
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. doi:10.1038/nmeth.3176 PubMed DOI
Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385. doi:10.1186/1471-2105-12-385 PubMed DOI PMC
Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. 2021. Checkv assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 39:578–585. doi:10.1038/s41587-020-00774-7 PubMed DOI PMC
Vasimuddin M, Misra S, Li H, Aluru S. 2019. “Efficient architecture-aware acceleration of BWA-MEM for multicore systems” 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS); Rio de Janeiro, Brazil: , p 314–324. doi:10.1109/IPDPS.2019.00041 DOI
Rangel-Pineros G, Almeida A, Beracochea M, Sakharova E, Marz M, Reyes Muñoz A, Hölzer M, Finn RD. 2023. VIRify: an integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models. PLoS Comput Biol 19:e1011422. doi:10.1371/journal.pcbi.1011422 PubMed DOI PMC
Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K. 2022. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res 50:14. doi:10.1093/nar/gkac341 PubMed DOI PMC
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi:10.1038/ismej.2017.126 PubMed DOI PMC
Roux S, Páez-Espino D, Chen I-M, Palaniappan K, Ratner A, Chu K, Reddy TBK, Nayfach S, Schulz F, Call L, Neches RY, Woyke T, Ivanova NN, Eloe-Fadrosh EA, Kyrpides NC. 2021. IMG/VR V3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res 49:D764–D775. doi:10.1093/nar/gkaa946 PubMed DOI PMC
Tolstoganov I, Kamenev Y, Kruglikov R, Ochkalova S, Korobeynikov A. 2022. BinSPreader: refine binning results for fuller MAG reconstruction. iScience 25:104770. doi:10.1016/j.isci.2022.104770 PubMed DOI PMC
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitúa MC, Vik D, Sullivan MB, Roux S. 2021. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37. doi:10.1186/s40168-020-00990-y PubMed DOI PMC
Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, Liu P, Narrowe AB, Rodríguez-Ramos J, Bolduc B, Gazitúa MC, Daly RA, Smith GJ, Vik DR, Pope PB, Sullivan MB, Roux S, Wrighton KC. 2020. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48:8883–8900. doi:10.1093/nar/gkaa621 PubMed DOI PMC
Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, Yinda CK, Lavigne R, Maes P, Van Ranst M, Heylen E, Matthijnssens J. 2015. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep 5:16532. doi:10.1038/srep16532 PubMed DOI PMC
Deboutte W, Beller L, Yinda CK, Maes P, de Graaf DC, Matthijnssens J. 2020. Honey-bee-associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proc Natl Acad Sci U S A 117:10511–10519. doi:10.1073/pnas.1921859117 PubMed DOI PMC
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. doi:10.1093/nar/gkz991 PubMed DOI PMC
Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348 PubMed DOI PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. Modeltest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. doi:10.1093/molbev/msz189 PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyMl 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 PubMed DOI
Letunic I, Bork P. 2019. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239 PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421 PubMed DOI PMC
Zulkower V, Rosser S. 2020. DNA features viewer: a sequence annotation formatting and plotting library for python. Bioinformatics 36:4350–4352. doi:10.1093/bioinformatics/btaa213 PubMed DOI
Laugel M, Lecomte E, Ayuso E, Adjali O, Mével M, Penaud-Budloo M. 2023. The diversity of Parvovirus telomeres. In Fonseca-Alves CE (ed), Recent advances in canine medicine, IntechOpen. London.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963 PubMed DOI PMC
Wang X, Shang Y, Chen C, Liu S, Chang M, Zhang N, Hu H, Zhang F, Zhang T, Wang Z, Liu X, Lin Z, Deng F, Wang H, Zou Z, Vlak JM, Wang M, Hu Z. 2019. Baculovirus per os infectivity factor complex: components and assembly. J Virol 93:e02053-18. doi:10.1128/JVI.02053-18 PubMed DOI PMC
Allain TW, Stentiford GD, Bass D, Behringer DC, Bojko J. 2020. A novel nudivirus infecting the invasive demon shrimp Dikerogammarus haemobaphes (Amphipoda). Sci Rep 10:14816. doi:10.1038/s41598-020-71776-3 PubMed DOI PMC
Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. 2016. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 140:83–96. doi:10.1016/j.jip.2016.09.005 PubMed DOI
Xu P, Liu Y, Graham RI, Wilson K, Wu K. 2014. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a Baculovirus and Bt biopesticide. PLoS Pathog 10:e1004490. doi:10.1371/journal.ppat.1004490 PubMed DOI PMC
Sarker S, Talukder S, Anwar A, Van TTH, Petrovski S. 2022. Unravelling bile viromes of free-range laying chickens clinically diagnosed with spotty liver disease: emergence of many novel chaphamaparvoviruses into multiple lineages. Viruses 14:2543. doi:10.3390/v14112543 PubMed DOI PMC
Liu J, Lin R, Wu G, Liu R, Luo Z, Fan X. 2022. CoCoNet: coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion. arXiv:2211.10960. doi:10.48550/arXiv.2211.10960 DOI
Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, Jensen LJ, Nielsen HB, Petersen TN, Winther O, Rasmussen S. 2021. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol 39:555–560. doi:10.1038/s41587-020-00777-4 PubMed DOI
Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158. doi:10.1186/s40168-018-0541-1 PubMed DOI PMC