Body size and trophic position determine the outcomes of species invasions along temperature and productivity gradients
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
318930
Academy of Finland Profi4 Grant
ANR-19-CE02-0001-01
Agence Nationale de la Recherche
21-29169S
Grantová Agentura České Republiky
PubMed
37811596
DOI
10.1111/ele.14310
Knihovny.cz E-zdroje
- Klíčová slova
- body size, diversity-stability relationship, eutrophication, metabolic ecology, predator-prey mass ratio, species invasions, trophic modules, warming,
- MeSH
- ekosystém * MeSH
- potravní řetězec * MeSH
- predátorské chování MeSH
- teplota MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Species invasions are predicted to increase in frequency with global change, but quantitative predictions of how environmental filters and species traits influence the success and consequences of invasions for local communities are lacking. Here we investigate how invaders alter the structure, diversity and stability regime of simple communities across environmental gradients (habitat productivity, temperature) and community size structure. We simulate all three-species trophic modules (apparent and exploitative competition, trophic chain and intraguild predation). We predict that invasions most often succeed in warm and productive habitats and that successful invaders include smaller competitors, intraguild predators and comparatively small top predators. This suggests that species invasions and global change may facilitate the downsizing of food webs. Furthermore, we show that successful invasions leading to species substitutions rarely alter system stability, while invasions leading to increased diversity can destabilize or stabilize community dynamics depending on the environmental conditions and invader's trophic position.
Czech Academy of Sciences Biology Centre Institute of Entomology České Budějovice Czech Republic
Ecology and Genetics Unit Faculty of Science University of Oulu Oulu Finland
INRAE Aix Marseille University UMR RECOVER Aix en Provence France
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Basen, T., Fleckenstein, K.M., Rinke, K., Rothhaupt, K.-O. & Martin-Creuzburg, D. (2017) Impact of temperature and nutrient dynamics on growth and survival of Corbicula fluminea: a field study in oligotrophic Lake Constance. International Review of Hydrobiology, 102, 15-28.
Bell, T., Neill, W.E. & Schluter, D. (2003) The effect of temporal scale on the outcome of trophic cascade experiments. Oecologia, 134, 578-586.
Bellard, C., Cassey, P. & Blackburn, T.M. (2016) Alien species as a driver of recent extinctions. Biology Letters, 12, 24-27.
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology, 19, 3740-3748.
Binzer, A., Guill, C., Brose, U. & Rall, B.C. (2012) The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2935-2944.
Binzer, A., Guill, C., Rall, B.C. & Brose, U. (2016) Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Global Change Biology, 22, 220-227.
Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarošík, V. et al. (2011) A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 26, 333-339.
Bøhn, T., Amundsen, P.A. & Sparrow, A. (2008) Competitive exclusion after invasion? Biological Invasions, 10, 359-368.
Boukal, D.S., Bideault, A., Carreira, B.M. & Sentis, A. (2019) Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. Current Opinion in Insect Science, 35, 88-95.
Brose, U., Blanchard, J.L., Eklöf, A., Galiana, N., Hartvig, M., Hirt, M.R. et al. (2017) Predicting the consequences of species loss using size-structured biodiversity approaches. Biological Reviews, 92, 684-697.
Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D. & Jacob, U. (2012) Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2903-2912.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Brown, J.H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58, 445-449.
Burns, C.W. (2013) Predictors of invasion success by daphnia species: influence of food, temperature and species identity. Biol Invasions, 15, 859-869.
Chan, F.T., Stanislawczyk, K., Sneekes, A.C., Dvoretsky, A., Gollasch, S., Minchin, D. et al. (2019) Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Global Change Biology, 25, 25-38.
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
Clark, C.M., Bell, M.D., Boyd, J.W., Compton, J.E., Davidson, E.A., Davis, C. et al. (2017) Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services. Ecosphere, 8(7), e01877.
Dell, A.I., Pawar, S. & Savage, V.M. (2014) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83, 70-84.
Dijoux, S. & Boukal, D.S. (2021) Community structure and collapses in multichannel food webs: role of consumer body sizes and mesohabitat productivities. Ecology Letters, 24, 1607-1618.
Downing, A.S., van Nes, E.H., Mooij, W.M. & Scheffer, M. (2012) The resilience and resistance of an ecosystem to a collapse of diversity. PLoS ONE, 7, 1-7.
Dueñas, M.A., Ruffhead, H.J., Wakefield, N.H., Roberts, P.D., Hemming, D.J. & Diaz-Soltero, H. (2018) The role played by invasive species in interactions with endangered and threatened species in the United States: a systematic review. Biodiversity and Conservation, 27, 3171-3183.
Elton, C.S. (2001) Animal Ecology. University of Chicago Press.
Essl, F., Lenzner, B., Bacher, S., Bailey, S., Capinha, C., Daehler, C. et al. (2020) Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26, 4880-4893.
Evans, L.E., Hirst, A.G., Kratina, P. & Beaugrand, G. (2020) Temperature-mediated changes in zooplankton body size: large scale temporal and spatial analysis. Ecography, 43, 581-590.
Ferreira-Rodríguez, N., Gangloff, M., Shafer, G. & Atkinson, C.L. (2022) Drivers of ecosystem vulnerability to corbicula invasions in southeastern North America. Biological Invasions, 24, 1677-1688.
Francis, T.B., Wolkovich, E.M., Scheuerell, M.D., Katz, S.L., Holmes, E.E. & Hampton, S.E. (2014) Shifting regimes and changing interactions in the Lake Washington, U.S.A., plankton community from 1962 to 1994. PLoS ONE, 9(10), e110363.
Fussmann, K.E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B.C. (2014) Ecological stability in response to warming. Nature Climate Change, 4, 206-210.
Galetti, M. & Dirzo, R. (2016) Patterns, Causes, and Consequences of Anthropocene Defaunation. Annual Review of Ecology, Evolution, and Systematics, 47, 333-358.
Gallardo, B., Clavero, M., Sánchez, M.I. & Vilà, M. (2016) Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22, 151-163.
Gallien, L. & Carboni, M. (2017) The community ecology of invasive species: where are we and what's next? Ecography, 40, 335-352.
Glibert, P.M. (2017) Eutrophication, harmful algae and biodiversity-challenging paradigms in a world of complex nutrient changes. Marine Pollution Bulletin, 124, 591-606.
Gray, S.M., Dykhuizen, D.E. & Padilla, D.K. (2015) The effects of species properties and community context on establishment success. Oikos, 124, 355-363.
Henriksson, A., Wardle, D.A., Trygg, J., Diehl, S. & Englund, G. (2016) Strong invaders are strong defenders-implications for the resistance of invaded communities. Ecology Letters, 19, 487-494.
Herbold, B. & Moyle, P.B. (1986) Species and vacant niches. American Naturalist, 128, 751-760.
Holt, R.D., Grover, J. & Tilman, D. (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. The American Naturalist, 144, 741-771.
Holt, R.D. & Polis, G.A. (1997) A theoretical framework for intraguild predation. The American Naturalist, 149, 745-764.
Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., et al. (2022) Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25, 555-569.
Hughes, B.B., Eby, R., Van Dyke, E., Tinker, M.T., Marks, C.I., Johnson, K.S. et al. (2013) Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences, 110, 15313-15318.
IPBES, Eduardo, B., Sandra, D., Josef, S. & Ngo, H.T. (2019) Global assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn, Germany: IPBES secr.
Janssen, A.B.G., Teurlincx, S., An, S., Janse, J.H., Paerl, H.W. & Mooij, W.M. (2014) Alternative stable states in large shallow lakes? Journal of Great Lakes Research, 40, 813-826.
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599.
Latombe, G., Richardson, D.M., McGeoch, M.A., Altwegg, R., Catford, J.A., Chase, J.M. et al. (2021) Mechanistic reconciliation of community and invasion ecology. Ecosphere, 12(2), e03359.
MacArthur, R.H. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
MacDougall, A.S., McCann, K.S., Gellner, G. & Turkington, R. (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature, 494, 86-89.
McCann, K.S. & Rooney, N. (2009) The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1789-1801.
McCauley, D.J., Gellner, G., Martinez, N.D., Williams, R.J., Sandin, S.A., Micheli, F. et al. (2018) On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecology Letters, 21, 439-454.
Melbourne, B.A., Cornell, H.V., Davies, K.F., Dugaw, C.J., Elmendorf, S., Freestone, A.L. et al. (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecology Letters, 10, 77-94.
Meyer, K.M., Vos, M., Mooij, W.M., Hol, W.H.G., Termorshuizen, A.J. & van der Putten, W.H. (2012) Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community. PLoS ONE, 7(11), e49034.
Mitchell, C.E., Agrawal, A.A., Bever, J.D., Gilbert, G.S., Hufbauer, R.A., Klironomos, J.N. et al. (2006) Biotic interactions and plant invasions. Ecology Letters, 9, 726-740.
Moyle, P.B. & Light, T. (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation, 78, 149-161.
O'Gorman, E.J., Petchey, O.L., Faulkner, K.J., Gallo, B., Gordon, T.A.C., Neto-Cerejeira, J. et al. (2019) A simple model predicts how warming simplifies wild food webs. Nature Climate Change, 9, 611-616.
Oksanen, L., Fretwell, S.D., Arruda, J., Niemela, P. & Niemelä, P. (1981) Exploitation ecosystems in gradients of primary productivity. The American Naturalist, 118, 240-261.
Ou, C., Montaña, C.G. & Winemiller, K.O. (2017) Body size-trophic position relationships among fishes of the lower Mekong basin. Royal Society Open Science, 4(160), 645.
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
Pörtner, H.O. & Farrell, A.P. (2008) Physiology and climate change. Science, 322, 690-692.
R Core Team. (2019) R: A Language and Environment for Statistical Computing.
Rall, B.C., Brose, U., Hartvig, M., Vucic-pestic, O., Kalinkat, G., Schwarzmu, F. et al. (2012) Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society B, 367, 2923-2934.
Rall, B.C., Vucic-Pestic, O., Ehnes, R.B., EmmersoN, M. & Brose, U. (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157.
Reynolds, S.A. & Aldridge, D.C. (2021) Global impacts of invasive species on the tipping points of shallow lakes. Global Change Biology, 27, 6129-6138.
Ricklefs, R.E. (1977) Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111, 376-381.
Rodgers, E.M. (2021) Adding climate change to the mix: responses of aquatic ectotherms to the combined effects of eutrophication and warming. Biology Letters, 17, 20210442.
Rooney, N. & McCann, K.S. (2012) Integrating food web diversity, structure and stability. Trends in Ecology and Evolution, 27, 40-45.
Schröder, A., Nilsson, K.A., Persson, L., Van Kooten, T. & Reichstein, B. (2009) Invasion success depends on invader body size in a size-structured mixed predation-competition community. Journal of Animal Ecology, 78, 1152-1162.
Seebens, H., Bacher, S., Blackburn, T.M., Capinha, C., Dawson, W., Dullinger, S. et al. (2021) Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970-982.
Sentis, A., Binzer, A. & Boukal, D.S. (2017) Temperature-size responses alter food chain persistence across environmental gradients. Ecology Letters, 20, 852-862.
Sentis, A., Montoya, J.M. & Lurgi, M. (2021) Warming indirectly increases invasion success in food webs. Proceedings of the Royal Society B: Biological Sciences, 288, 20202622.
Shea, K. & Chesson, P. (2002) Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution, 17, 170-176.
Soetaert, K. & Herman, P.M.J. (2009) A practical guide to ecological modelling. Using R as a simulation platform. A practical guide to ecological modelling. Netherlands, Dordrecht: Springer.
Soetaert, K., Petzoldt, T. & Setzer, R.W. (2010) Solving differential equations in R: package deSolve. Journal of Statistical Software, 33(9), 1-25.
Sunday, J.M. (2020) The pace of biodiversity change in a warming climate. Nature, 580, 460-461.
Sunday, J.M., Bates, A.E. & Dulvy, N.K. (2012) Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686-690.
Thompson, P.L., MacLennan, M.M. & Vinebrooke, R.D. (2018a) An improved null model for assessing the net effects of multiple stressors on communities. Global Change Biology, 24, 517-525.
Thompson, P.L., MacLennan, M.M. & Vinebrooke, R.D. (2018b) Species interactions cause non-additive effects of multiple environmental stressors on communities. Ecosphere, 9(11), e02518.
Tilman, D. (1985) The resource-ratio hypothesis of plant succession. The American Naturalist, 125, 827-852.
Tilman, D. (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455-1474.
Tilman, D. & Downing, J.A. (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365.
Tomiolo, S. & Ward, D. (2018) Species migrations and range shifts: a synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics, 33, 62-77.
Trisos, C.H., Merow, C. & Pigot, A.L. (2020) The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
Wardle, D.A., Bardgett, R.D., Callaway, R.M. & Van Der Putten, W.H. (2011) Terrestrial ecosystem responses to species gains and losses. Science, 332, 1273-1277.
Wootton, K.L. (2017) Omnivory and stability in freshwater habitats: does theory match reality? Freshwater Biology, 62, 821-832.
Yodzis, P. & Innes, S. (1992) Body size and consumer-resource dynamics. The American Naturalist, 139, 1151-1175.
Young, H.S, McCauley, D.J., Galetti, M. & Dirzo, R. (2016) Patterns, Causes, and Consequences of Anthropocene Defaunation. Annual Review of Ecology, Evolution, and Systematics, 47, 333-358.