Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EXCELES, No. LX22NPO5103
National Institute of Virology and Bacteriology
GACR 21-11661S
Czech Science Foundation
PubMed
37814284
PubMed Central
PMC10561450
DOI
10.1186/s13071-023-05971-2
PII: 10.1186/s13071-023-05971-2
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rDNA, Algeria, COI, Czech Republic, ITS2, Ixodes inopinatus, Ixodes ricinus, TROSPA, Tick,
- MeSH
- fylogeneze MeSH
- klíště * MeSH
- multiplexová polymerázová řetězová reakce MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- ribozomální DNA MeSH
BACKGROUND: Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ). METHODS: A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis. RESULTS: Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. CONCLUSIONS: We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.
Biomedical Center Faculty of Medicine in Pilsen Charles University Plzen Czech Republic
CEITEC University of Veterinary Sciences Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University Brno Czech Republic
Department of Parasitology Charles University Prague Czech Republic
Department of Zoology Palacky University Olomouc Olomouc Czech Republic
Institute of Parasitology Biology Center of Czech Academy of Sciences Budějovice Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Estrada-Peña A, de la Fuente J. Host distribution does not limit the range of the tick Ixodes ricinus but impacts the circulation of transmitted pathogens. Front Cell Infect Microbiol. 2017;7:1–10. doi: 10.3389/fcimb.2017.00405. PubMed DOI PMC
Al-Khafaji AM, Clegg SR, Pinder AC, Luu L, Hansford KM, Seelig F, et al. Multi-locus sequence typing of Ixodes ricinus and its symbiont Candidatus Midichloria mitochondrii across Europe reveals evidence of local co-cladogenesis in Scotland. Ticks Tick Borne Dis. 2019;10:52–62. doi: 10.1016/j.ttbdis.2018.08.016. PubMed DOI
Røed KH, Kvie KS, Hasle G, Gilbert L, Leinaas HP. Phylogenetic lineages and postglacial dispersal dynamics characterize the genetic structure of the tick, Ixodes ricinus, in Northwest Europe. PLoS ONE. 2016;11:e0167450. doi: 10.1371/journal.pone.0167450. PubMed DOI PMC
Dinnis RE, Seelig F, Bormane A, Donaghy M, Vollmer SA, Feil EJ, et al. Multilocus sequence typing using mitochondrial genes (mtMLST) reveals geographic population structure of Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:152–160. doi: 10.1016/j.ttbdis.2013.10.001. PubMed DOI
Noureddine R, Chauvin A, Plantard O. Lack of genetic structure among Eurasian populations of the tick Ixodes ricinus contrasts with marked divergence from north-African populations. Int J Parasitol. 2011;41:183–192. doi: 10.1016/j.ijpara.2010.08.010. PubMed DOI
Poli P, Lenoir J, Plantard O, Ehrmann S, Røed KH, Leinaas HP, et al. Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks Tick Borne Dis. 2020;11:101509. doi: 10.1016/j.ttbdis.2020.101509. PubMed DOI
Estrada-Peña A, Nava S, Petney T. Description of all the stages of Ixodes inopinatus n sp (Acari: Ixodidae) Ticks Tick Borne Dis. 2014;5:734–743. doi: 10.1016/j.ttbdis.2014.05.003. PubMed DOI
Fares W, Dachraoui K, Cherni S, Barhoumi W, Ben ST, Younsi H, et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks Tunisia. Ticks Tick Borne Dis. 2021;12:101606. doi: 10.1016/j.ttbdis.2020.101606. PubMed DOI
Chitimia-Dobler L, Bestehorn M, Bröker M, Borde J, Molcanyi T, Andersen NS, et al. Morphological anomalies in Ixodes ricinus and Ixodes inopinatus collected from tick-borne encephalitis natural foci in Central Europe. Exp Appl Acarol. 2017;72:379–397. doi: 10.1007/s10493-017-0163-5. PubMed DOI
Kahl O, Kämmer D, Bulling I, Komorek M, von Eiff C, Malerczyk C. Ticks on the turf: investigating the presence of ixodid ticks on and around football fields in Germany. Exp Appl Acarol. 2021;84:585–591. doi: 10.1007/s10493-021-00628-0. PubMed DOI PMC
Król N, Obiegala A, Imholt C, Arz C, Schmidt E, Jeske K, et al. Diversity of Borrelia burgdorferi sensu lato in ticks and small mammals from different habitats. Parasit Vectors. 2022;15:195. doi: 10.1186/s13071-022-05326-3. PubMed DOI PMC
Mechouk N, Mihalca AD, Deak G, Bouslama Z. Synopsis of the ticks of Algeria with new hosts and localities records. Parasit Vectors. 2022;15:302. doi: 10.1186/s13071-022-05424-2. PubMed DOI PMC
del Cerro A, Oleaga A, Somoano A, Barandika JF, García-Pérez AL, Espí A. Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick Borne Dis. 2022;13:101961. doi: 10.1016/j.ttbdis.2022.101961. PubMed DOI
Hauck D, Springer A, Pachnicke S, Schunack B, Fingerle V, Strube C. Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol Res. 2019;118:3205–3216. doi: 10.1007/s00436-019-06506-4. PubMed DOI
Hauck D, Springer A, Chitimia-Dobler L, Strube C. Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany) Ticks Tick Borne Dis. 2020 doi: 10.1016/j.ttbdis.2020.101464. PubMed DOI
Hornok S, Daccord J, Takács N, Kontschán J, Tuska-Szalay B, Sándor AD, et al. Investigation on haplotypes of ixodid ticks and retrospective finding of Borrelia miyamotoi in bank vole (Myodes glareolus) in Switzerland. Ticks Tick Borne Dis. 2022;13:101865. doi: 10.1016/j.ttbdis.2021.101865. PubMed DOI
Chitimia-Dobler L, Rieß R, Kahl O, Wölfel S, Dobler G, Nava S, et al. Ixodes inopinatus—occurring also outside the Mediterranean region. Ticks Tick Borne Dis. 2018;9:196–200. doi: 10.1016/j.ttbdis.2017.09.004. PubMed DOI
Knoll S, Springer A, Hauck D, Schunack B, Pachnicke S, Strube C. Regional, seasonal, biennial and landscape-associated distribution of Anaplasma phagocytophilum and Rickettsia spp. infections in Ixodes ticks in northern Germany and implications for risk assessment at larger spatial scales. Ticks Tick Borne Dis. 2021;12:101657. doi: 10.1016/j.ttbdis.2021.101657. PubMed DOI
Hekimoğlu O. Phylogenetic placement of Turkish populations of Ixodes ricinus and Ixodes inopinatus. Exp Appl Acarol. 2022;88:179–189. doi: 10.1007/s10493-022-00750-7. PubMed DOI
Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, et al. The population structure of Borrelia lusitaniae Is reflected by a population division of its Ixodes vector. Microorganisms. 2021;9:933. doi: 10.3390/microorganisms9050933. PubMed DOI PMC
Toma L, Mancuso E, d’Alessio SG, Menegon M, Spina F, Pascucci I, et al. Tick species from Africa by migratory birds: a 3-year study in Italy. Exp Appl Acarol. 2021;83:147–164. doi: 10.1007/s10493-020-00573-4. PubMed DOI
Elati K, Khbou MK, Kahl O, Mwacharo JM, El Shamaa K, Rekik M, et al. Preliminary study on the seasonal questing of Ixodes ricinus group ticks in Ain Draham forest (north-western Tunisia) with analyses of their phylogenetic diversity. Vet Parasitol Reg Stud Rep. 2022;36:100786. doi: 10.1016/j.vprsr.2022.100786. PubMed DOI
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover. Germany. Ticks Tick Borne Dis. 2022;13:101975. doi: 10.1016/j.ttbdis.2022.101975. PubMed DOI
Reynolds C, Kontschán J, Takács N, Solymosi N, Sándor AD, Keve G, et al. Shift in the seasonality of ixodid ticks after a warm winter in an urban habitat with notes on morphotypes of Ixodes ricinus and data in support of cryptic species within Ixodes frontalis. Exp Appl Acarol. 2022;88:127–138. doi: 10.1007/s10493-022-00756-1. PubMed DOI PMC
Vogelgesang JR, Walter M, Kahl O, Rubel F, Brugger K. Long-term monitoring of the seasonal density of questing ixodid ticks in Vienna (Austria): setup and first results. Exp Appl Acarol. 2020;81:409–420. doi: 10.1007/s10493-020-00511-4. PubMed DOI PMC
D’Amico G, Estrada-Peña A, Kalmár Z, Fuh T, Petrželková K, Mihalca AD. Redescription of the adult stages of Ixodes (Afrixodes) rasus Neumann 1899, with notes on its phylogenetic position within the genus Ixodes. Ticks Tick Borne Dis. 2018;9:654–659. doi: 10.1016/j.ttbdis.2018.02.006. PubMed DOI
Backus LH, Foley JE, Hobbs GB, Bai Y, Beati L. A new species of tick, Ixodes (Ixodes) mojavensis (Acari: Ixodidae), from the Amargosa Valley of California. Ticks Tick Borne Dis. 2022;13:102020. doi: 10.1016/j.ttbdis.2022.102020. PubMed DOI PMC
Onofrio VC, Guglielmone AA, Barros-Battesti DM, Gianizella SL, Marcili A, Quadros RM, et al. Description of a new species of Ixodes (Acari: Ixodidae) and first report of Ixodes lasallei and Ixodes bocatorensis in Brazil. Ticks Tick Borne Dis. 2020;11:101423. doi: 10.1016/j.ttbdis.2020.101423. PubMed DOI
Orkun Ö, Vatansever Z. Rediscovery and first genetic description of some poorly known tick species: Haemaphysalis kopetdaghica Kerbabaev, 1962 and Dermacentor raskemensis Pomerantzev, 1946. Ticks Tick Borne Dis. 2021;12:101726. doi: 10.1016/j.ttbdis.2021.101726. PubMed DOI
Rar V, Yakimenko V, Tikunov A, Vinarskaya N, Tancev A, Babkin I, et al. Genetic and morphological characterization of Ixodes apronophorus from Western Siberia Russia. Ticks Tick Borne Dis. 2020;11:101284. doi: 10.1016/j.ttbdis.2019.101284. PubMed DOI
Saracho-Bottero MN, Venzal JM, Tarragona EL, Thompson CS, Mangold AJ, Beati L, et al. The Ixodes ricinus complex (Acari: Ixodidae) in the Southern Cone of America: Ixodes pararicinus, Ixodes aragaoi, and Ixodes sp. cf. I. affinis. Parasitol Res. 2020;119:43–54. doi: 10.1007/s00436-019-06470-z. PubMed DOI
Fukunaga M, Yabuki M, Hamase A, Oliver JH, Nakao M. Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences. J Parasitol. 2000;86:38–43. doi: 10.1645/0022-3395(2000)086[0038:MPAOIT]2.0.CO;2. PubMed DOI
Kovalev SY, Fedorova SZh, Mukhacheva TA. Molecular features of Ixodes kazakstani: first results. Ticks Tick Borne Dis. 2018;9:759–761. doi: 10.1016/j.ttbdis.2018.02.019. PubMed DOI
Numan M, Islam N, Adnan M, Zaman Safi S, Chitimia-Dobler L, Labruna MB, et al. First genetic report of Ixodes kashmiricus and associated Rickettsia sp. Parasit Vectors. 2022;15:378. doi: 10.1186/s13071-022-05509-y. PubMed DOI PMC
Kovalev SY, Mikhaylishcheva MS, Mukhacheva TA. Natural hybridization of the ticks Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia. Infect Genet Evol. 2015;32:388–395. doi: 10.1016/j.meegid.2015.04.003. PubMed DOI
Kovalev SY, Golovljova IV, Mukhacheva TA. Natural hybridization between Ixodes ricinus and Ixodes persulcatus ticks evidenced by molecular genetics methods. Ticks Tick Borne Dis. 2016;7:113–118. doi: 10.1016/j.ttbdis.2015.09.005. PubMed DOI
Latrofa MS, Giannelli A, Persichetti MF, Pennisi MG, Solano-Gallego L, Brianti E, et al. Ixodes ventalloi: morphological and molecular support for species integrity. Parasitol Res. 2017;116:251–258. doi: 10.1007/s00436-016-5286-9. PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13:729–744. doi: 10.1046/j.1365-294X.2003.02063.x. PubMed DOI
Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–3930. doi: 10.1111/j.1365-294X.2012.05664.x. PubMed DOI
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis. 2021;12:101682. doi: 10.1016/j.ttbdis.2021.101682. PubMed DOI
Babkin IV, Tikunov AY, Gologljova I, Tikunova NV. High level of identity of calreticulin gene sequences of Ixodes persulcatus and Ixodes pavlovskyi ticks. J Parasitol. 2018;104:337–341. doi: 10.1645/17-186. PubMed DOI
Rhymer JM, Simberloff D. Extinction by hybridization and introgression. Annu Rev Ecol Syst. 1996;1:83–109. doi: 10.1146/annurev.ecolsys.27.1.83. DOI
Husemann M, Schmitt T, Zachos FE, Ulrich W, Habel JC. Palaearctic biogeography revisited: evidence for the existence of a North African refugium for Western Palaearctic biota. J Biogeogr. 2014;41:81–94. doi: 10.1111/jbi.12180. DOI
Hasle G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front Cell Infect Microbiol. 2013;4:1–6. doi: 10.3389/fcimb.2013.00048. PubMed DOI PMC
Sándor AD, Mărcuţan DI, D’Amico G, Gherman CM, Dumitrache MO, Mihalca AD. Do the ticks of birds at an important migratory hotspot reflect the seasonal dynamics of Ixodes ricinus at the migration initiation site? a case study in the Danube Delta. PLoS ONE. 2014;9:e89378. doi: 10.1371/journal.pone.0089378. PubMed DOI PMC
Estrada-Peña A, D’Amico G, Fernández-Ruiz N. Modelling the potential spread of Hyalomma marginatum ticks in Europe by migratory birds. Int J Parasitol. 2021;51:1–11. doi: 10.1016/j.ijpara.2020.08.004. PubMed DOI
Lesiczka PM, Daněk O, Modrý D, Hrazdilová K, Votýpka J, Zurek L. A new report of adult Hyalomma marginatum and Hyalomma rufipes in the Czech Republic. Ticks Tick Borne Dis. 2022 doi: 10.1016/j.ttbdis.2021.101894. PubMed DOI
Toma L, Mancuso E, Alessio SG, Menegom M, Spina F, Pascucci I, Monaco F, Goffredo M, Di Lica M. Tick species from Africa by migratory birds: a 3-year study in Italy. Exp Appl Acarol. 2021;83:147–164. doi: 10.1007/s10493-020-00573-4. PubMed DOI
Rollins RE, Margos G, Brachmann A, Krebs S, Mouchet A, Dingemanse NJ, et al. German Ixodes inopinatus samples may not actually represent this tick species. Int J Parasitol. 2023 doi: 10.1101/2023.02.14.528458. PubMed DOI
Jizhou Lv, Shaoqiang Wu, Yongning Zhang, Tianyi Zhang, Chunyan Feng, Guangle Jia & Xiangmei Lin Development of a DNA barcoding system for the Ixodida (Acari: Ixodida), Mitochondrial DNA, 2014;25:(2)142–149, 10.3109/19401736.2013.792052 PubMed