APE1-dependent base excision repair of DNA photodimers in human cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/W024128/1
Medical Research Council - United Kingdom
PubMed
37816354
DOI
10.1016/j.molcel.2023.09.013
PII: S1097-2765(23)00735-9
Knihovny.cz E-zdroje
- Klíčová slova
- PARP1, base excision repair, nucleotide excision repair, photoproducts, single-strand break repair,
- MeSH
- DNA genetika MeSH
- lidé MeSH
- oprava DNA genetika MeSH
- poškození DNA genetika MeSH
- protein XRCC1 metabolismus MeSH
- pyrimidinové dimery genetika metabolismus MeSH
- ultrafialové záření MeSH
- xeroderma pigmentosum * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- protein XRCC1 MeSH
- pyrimidinové dimery MeSH
- XRCC1 protein, human MeSH Prohlížeč
UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.
Citace poskytuje Crossref.org