Immobilization of Trifluoromethyl-Substituted Pyridine-Oxazoline Ligand and Its Application in Asymmetric Continuous Flow Synthesis of Benzosultams

. 2023 Nov 03 ; 88 (21) : 15189-15197. [epub] 20231012

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37823216

This study presents an improved synthetic route to ligand (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole and its application as a highly active and enantioselective catalyst in the addition of arylboronic acids to cyclic N-sulfonylketimines. Immobilization of such a ligand was achieved using a commercially available starting material and a PS-PEG TentaGel S NH2 support, resulting in a stable heterogeneous catalyst. Although the anchored catalyst exhibited a slight reduction in enantioselectivity and a 4-fold decrease in reaction rate, it displayed remarkable stability, enabling 10 consecutive reaction cycles. Furthermore, the successful transition to a continuous flow system demonstrated even higher turnover numbers compared to batch arrangements. These findings provide valuable insights into the development of efficient flow reactors for continuous synthesis of benzosultams, further advancing the field of asymmetric catalysis.

Zobrazit více v PubMed

Yang G.; Zhang W. Renaissance of Pyridine-Oxazolines as Chiral Ligands for Asymmetric Catalysis. Chem. Soc. Rev. 2018, 47 (5), 1783–1810. 10.1039/C7CS00615B. PubMed DOI

Giofrè S.; Molteni L.; Beccalli E. M. Asymmetric Pd(II)-Catalyzed C–O, C–N, C–C Bond Formation Using Alkenes as Substrates: Insight into Recent Enantioselective Developments. Eur. J. Org. Chem. 2023, 26 (2), e20220097610.1002/ejoc.202200976. DOI

Lamb C. J. C.; Vilela F.; Lee A.-L. Pd(II)-Catalyzed Enantioselective Desymmetrization of Polycyclic Cyclohexenediones: Conjugate Addition versus Oxidative Heck. Org. Lett. 2019, 21 (21), 8689–8694. 10.1021/acs.orglett.9b03293. PubMed DOI

Hsu D.-S.; Wang M.-Y.; Huang J.-Y. Asymmetric Total Syntheses of (+)-5-Epi-Schisansphenin B and the Proposed Structure of (+)-15-Hydroxyacora-4(14),8-Diene. J. Org. Chem. 2022, 87 (1), 644–651. 10.1021/acs.joc.1c02627. PubMed DOI

Chen G.; Cao J.; Wang Q.; Zhu J. Desymmetrization of Prochiral Cyclopentenes Enabled by Enantioselective Palladium-Catalyzed Oxidative Heck Reaction. Org. Lett. 2020, 22 (1), 322–325. 10.1021/acs.orglett.9b04357. PubMed DOI

Chen Z.-M.; Liu J.; Guo J.-Y.; Loch M.; DeLuca R. J.; Sigman M. S. Palladium-Catalyzed Enantioselective Alkenylation of Alkenylbenzene Derivatives. Chem. Sci. 2019, 10 (30), 7246–7250. 10.1039/C9SC02380A. PubMed DOI PMC

Yuan Q.; Sigman M. S. Palladium-Catalyzed Enantioselective Relay Heck Arylation of Enelactams: Accessing α,β-Unsaturated δ-Lactams. J. Am. Chem. Soc. 2018, 140 (21), 6527–6530. 10.1021/jacs.8b02752. PubMed DOI PMC

Jiang Z.-Z.; Gao A.; Li H.; Chen D.; Ding C.-H.; Xu B.; Hou X.-L. Enantioselective Synthesis of Chromenes via a Palladium-Catalyzed Asymmetric Redox-Relay Heck Reaction. Chem. – Asian J. 2017, 12 (24), 3119–3122. 10.1002/asia.201701504. PubMed DOI

Zhang C.; Tutkowski B.; DeLuca R. J.; Joyce L. A.; Wiest O.; Sigman M. S. Palladium-Catalyzed Enantioselective Heck Alkenylation of Trisubstituted Allylic Alkenols: A Redox-Relay Strategy to Construct Vicinal Stereocenters. Chem. Sci. 2017, 8 (3), 2277–2282. 10.1039/C6SC04585E. PubMed DOI PMC

Herrera C. L.; Santiago J. V.; Pastre J. C.; Correia C. R. D. In Tandem Auto-Sustainable Enantioselective Heck-Matsuda Reactions Directly from Anilines. Adv. Synth. Catal. 2022, 364 (11), 1863–1872. 10.1002/adsc.202200205. DOI

de Oliveira Silva J.; Angnes R. A.; Menezes da Silva V. H.; Servilha B. M.; Adeel M.; Braga A. A. C.; Aponick A.; Correia C. R. D. Intermolecular Noncovalent Hydroxy-Directed Enantioselective Heck Desymmetrization of Cyclopentenol: Computationally Driven Synthesis of Highly Functionalized Cis-4-Arylcyclopentenol Scaffolds. J. Org. Chem. 2016, 81 (5), 2010–2018. 10.1021/acs.joc.5b02846. PubMed DOI

Zou C.; Wu H.; Ji Y.; Zhang P.; Cui H.; Huang G.; Zhang C. Palladium-Catalyzed Intramolecular Dehydrogenative Arylboration of Alkenes. Chin. J. Chem. 2022, 40 (20), 2437–2444. 10.1002/cjoc.202200317. DOI

He Y.-P.; Cao J.; Wu H.; Wang Q.; Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew. Chem., Int. Ed. 2021, 60 (13), 7093–7097. 10.1002/anie.202016001. PubMed DOI

Sun M.; Wu H.; Xia X.; Chen W.; Wang Z.; Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J. Org. Chem. 2019, 84 (20), 12835–12847. 10.1021/acs.joc.9b01372. PubMed DOI

Marrazzo J.-P. R.; Chao A.; Li Y.; Fleming F. F. Copper-Catalyzed Conjugate Additions to Isocyanoalkenes. J. Org. Chem. 2022, 87 (1), 488–497. 10.1021/acs.joc.1c02516. PubMed DOI

Jiang X.; Han B.; Xue Y.; Duan M.; Gui Z.; Wang Y.; Zhu S. Nickel-Catalysed Migratory Hydroalkynylation and Enantioselective Hydroalkynylation of Olefins with Bromoalkynes. Nat. Commun. 2021, 12 (1), 379210.1038/s41467-021-24094-9. PubMed DOI PMC

Deng Y.; Meng Y.; Yang Q.; Liu Z.; Fan R.; Chen J.; Fan B.. Nickel/Copper Co-Catalyzed Enantioselective Reductive Coupling of Oxabenzonorbornadienes with Vinyl Bromides. Adv. Synth. Catal. 2023n/a ( (n/a), ). 10.1002/adsc.202300633. DOI

Bahamonde A.; Al Rifaie B.; Martín-Heras V.; Allen J. R.; Sigman M. S. Enantioselective Markovnikov Addition of Carbamates to Allylic Alcohols for the Construction of α-Secondary and α-Tertiary Amines. J. Am. Chem. Soc. 2019, 141 (22), 8708–8711. 10.1021/jacs.9b03438. PubMed DOI PMC

Guo Z.-Q.; Xu H.; Wang X.; Wang Z.-Y.; Ma B.; Dai H.-X. C3-Arylation of Indoles with Aryl Ketones via C–C/C–H Activations. Chem. Commun. 2021, 57 (76), 9716–9719. 10.1039/D1CC03954G. PubMed DOI

Sietmann J.; Tenberge M.; Wahl J. M. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew. Chem., Int. Ed. 2023, 62 (7), e20221538110.1002/anie.202215381. PubMed DOI PMC

Ni S.-X.; Li Y.-L.; Ni H.-Q.; Bi Y.-X.; Sheng J.; Wang X.-S. Nickel-Catalyzed Hydromonofluoromethylation of Unactivated Alkenes for Expedient Construction of Primary Alkyl Fluorides. Chin. Chem. Lett. 2023, 34 (3), 10761410.1016/j.cclet.2022.06.037. DOI

Lux M. C.; Boby M. L.; Brooks J. L.; Tan D. S. Synthesis of Bicyclic Ethers by a Palladium-Catalyzed Oxidative Cyclization-Redox Relay-π-Allyl-Pd Cyclization Cascade Reaction. Chem. Commun. 2019, 55 (49), 7013–7016. 10.1039/C9CC03775F. PubMed DOI PMC

Race N. J.; Schwalm C. S.; Nakamuro T.; Sigman M. S. Palladium-Catalyzed Enantioselective Intermolecular Coupling of Phenols and Allylic Alcohols. J. Am. Chem. Soc. 2016, 138 (49), 15881–15884. 10.1021/jacs.6b11486. PubMed DOI PMC

Chen Z.-M.; Nervig C. S.; DeLuca R. J.; Sigman M. S. Palladium-Catalyzed Enantioselective Redox-Relay Heck Alkynylation of Alkenols To Access Propargylic Stereocenters. Angew. Chem., Int. Ed. 2017, 56 (23), 6651–6654. 10.1002/anie.201703089. PubMed DOI PMC

Zhang C.; Santiago C. B.; Crawford J. M.; Sigman M. S. Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. J. Am. Chem. Soc. 2015, 137 (50), 15668–15671. 10.1021/jacs.5b11335. PubMed DOI PMC

Wang M.-L.; Xu H.; Li H.-Y.; Ma B.; Wang Z.-Y.; Wang X.; Dai H.-X. Mizoroki–Heck Reaction of Unstrained Aryl Ketones via Ligand-Promoted C–C Bond Olefination. Org. Lett. 2021, 23 (6), 2147–2152. 10.1021/acs.orglett.1c00296. PubMed DOI

Chen J.; Li J.-H.; Zhu Y.-P.; Wang Q.-A. Copper-Catalyzed Enantioselective Arylboronation of Activated Alkenes Leading to Chiral 3,3′-Disubstituted Oxindoles. Org. Chem. Front. 2021, 8 (11), 2532–2536. 10.1039/D1QO00186H. DOI

Sandford C.; Fries L. R.; Ball T. E.; Minteer S. D.; Sigman M. S. Mechanistic Studies into the Oxidative Addition of Co(I) Complexes: Combining Electroanalytical Techniques with Parameterization. J. Am. Chem. Soc. 2019, 141 (47), 18877–18889. 10.1021/jacs.9b10771. PubMed DOI

Yang G.; Zhang W. A Palladium-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic Ketimines. Angew. Chem., Int. Ed. 2013, 52 (29), 7540–7544. 10.1002/anie.201302861. PubMed DOI

Zhou B.; Li K.; Jiang C.; Lu Y.; Hayashi T. Modified Amino Acid-Derived Phosphine-Imine Ligands for Palladium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Imines. Adv. Synth. Catal. 2017, 359 (11), 1969–1975. 10.1002/adsc.201700003. DOI

Jiang C.; Lu Y.; Hayashi T. High Performance of a Palladium Phosphinooxazoline Catalyst in the Asymmetric Arylation of Cyclic N-Sulfonyl Ketimines. Angew. Chem., Int. Ed. 2014, 53 (37), 9936–9939. 10.1002/anie.201406147. PubMed DOI

Li M.-F.; Miao A.-Q.; Zhu H.-Y.; Wang R.; Hao W.-J.; Tu S.-J.; Jiang B. Palladium/N,N′-Disulfonyl Bisimidazoline-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic N-Sulfonyl Ketimines. J. Org. Chem. 2020, 85 (21), 13602–13609. 10.1021/acs.joc.0c01722. PubMed DOI

Qiu Z.; Li Y.; Zhang Z.; Teng D. Spiro Indane-Based Phosphine–Oxazoline Ligands for Palladium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Imines. Transition Met. Chem. 2019, 44 (7), 649–654. 10.1007/s11243-019-00329-z. DOI

Quan M.; Yang G.; Xie F.; D Gridnev I.; Zhang W. Pd(Ii)-Catalyzed Asymmetric Addition of Arylboronic Acids to Cyclic N -Sulfonyl Ketimine Esters and a DFT Study of Its Mechanism. Org. Chem. Front. 2015, 2 (4), 398–402. 10.1039/C4QO00347K. DOI

Álvarez-Casao Y.; Monge D.; Álvarez E.; Fernández R.; Lassaletta J. M. Pyridine–Hydrazones as N,N′-Ligands in Asymmetric Catalysis: Pd(II)-Catalyzed Addition of Boronic Acids to Cyclic Sulfonylketimines. Org. Lett. 2015, 17 (20), 5104–5107. 10.1021/acs.orglett.5b02613. PubMed DOI

Schrapel C.; Peters R. Exogenous-Base-Free Palladacycle-Catalyzed Highly Enantioselective Arylation of Imines with Arylboroxines. Angew. Chem., Int. Ed. 2015, 54 (35), 10289–10293. 10.1002/anie.201501846. PubMed DOI

Quan M.; Wu L.; Yang G.; Zhang W. Pd(II), Ni(II) and Co(II)-Catalyzed Enantioselective Additions of Organoboron Reagents to Ketimines. Chem. Commun. 2018, 54 (74), 10394–10404. 10.1039/C8CC04932G. PubMed DOI

Jiang T.; Wang Z.; Xu M.-H. Rhodium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Aryl Alkyl Ketimines: Efficient Access to Highly Enantioenriched α-Tertiary Amines. Org. Lett. 2015, 17 (3), 528–531. 10.1021/ol503537w. PubMed DOI

Nishimura T.; Noishiki A.; Chit Tsui G.; Hayashi T. Asymmetric Synthesis of (Triaryl)Methylamines by Rhodium-Catalyzed Addition of Arylboroxines to Cyclic N-Sulfonyl Ketimines. J. Am. Chem. Soc. 2012, 134 (11), 5056–5059. 10.1021/ja300697c. PubMed DOI

Döpp D.; Lauterfeld P.; Schneider M.; Schneider D.; Henkel G.; Issac Y. A. el S.; Elghamry I. Photoisomerization of Sultams Derived from Saccharin; Part 4: Generation of Cyclic Sulfine Hydroxamic Acids. Synthesis 2001, 112 (8), 1228–1235. 10.1055/s-2001-15069. DOI

Elghamry I.; Döpp D. A New Photochemical Ring Expansion of 1,2-Benzisothiazole 1,1-Dioxides. Tetrahedron Lett. 2001, 42 (33), 5651–5653. 10.1016/S0040-4039(01)00992-3. DOI

Reddy K. N.; Rao M. V. K.; Sridhar B.; Reddy B. V. S. PdII-Catalyzed Spiroannulation of Cyclic N-Sulfonyl Ketimines with Aryl Iodides through C–H Bond Activation. Eur. J. Org. Chem. 2017, 2017 (28), 4085–4090. 10.1002/ejoc.201700569. DOI

Penso M.; Albanese D.; Landini D.; Lupi V.; Tagliabue A. Complementary Heterogeneous/Homogeneous Protocols for the Synthesis of Densely Functionalized Benzo[d]Sultams: C–C Bond Formation by Intramolecular Nucleophilic Aromatic Fluorine Displacement. J. Org. Chem. 2008, 73 (17), 6686–6690. 10.1021/jo800930g. PubMed DOI

Hallman K.; Macedo E.; Nordström K.; Moberg C. Enantioselective Allylic Alkylation Using Polymer-Supported Palladium Catalysts. Tetrahedron: Asymmetry 1999, 10 (20), 4037–4046. 10.1016/S0957-4166(99)00416-4. DOI

Aranda C.; Cornejo A.; Fraile J. M.; García-Verdugo E.; Gil M. J.; Luis S. V.; Mayoral J. A.; Martinez-Merino V.; Ochoa Z. Efficient Enhancement of Copper-Pyridineoxazoline Catalysts through Immobilization and Process Design. Green Chem. 2011, 13 (4), 983–990. 10.1039/c0gc00775g. DOI

Bartáček J.; Váňa J.; Drabina P.; Svoboda J.; Kocúrik M.; Sedlák M. Recoverable Polystyrene-Supported Palladium Catalyst for Construction of All-Carbon Quaternary Stereocenters via Asymmetric 1,4-Addition of Arylboronic Acids to Cyclic Enones. React. Funct. Polym. 2020, 153, 10461510.1016/j.reactfunctpolym.2020.104615. DOI

Lestini E.; Blackman L. D.; Zammit C. M.; Chen T.; Williams R. J.; Inam M.; Couturaud B.; O’Reilly R. K. Palladium-Polymer Nanoreactors for the Aqueous Asymmetric Synthesis of Therapeutic Flavonoids. Polym. Chem. 2018, 9 (7), 820–823. 10.1039/C7PY02050C. DOI

Zhou L.; Qiu J.; Wang M.; Xu Z.; Wang J.; Chen T. Fabrication of Nanoreactors Based on End-Functionalized Polymethacrylate and Their Catalysis Application. J. Inorg. Organomet. Polym. Mater. 2020, 30 (11), 4569–4577. 10.1007/s10904-020-01599-2. DOI

Pezzetta C.; Bonifazi D.; Davidson R. W. M. Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Org. Lett. 2019, 21 (22), 8957–8961. 10.1021/acs.orglett.9b03338. PubMed DOI

Moradi W. A.; Schlegel G.; Schnatterer A.; Volz F.. Catalytic Hydrogenation of Substituted Cyanopyridines and Process for Preparing Substituted Pyridylmethylbenzamides. WO2016173998A1, November 3, 2016.

Shen G.; Osako T.; Nagaosa M.; Uozumi Y. Aqueous Asymmetric 1,4-Addition of Arylboronic Acids to Enones Catalyzed by an Amphiphilic Resin-Supported Chiral Diene Rhodium Complex under Batch and Continuous-Flow Conditions. J. Org. Chem. 2018, 83 (14), 7380–7387. 10.1021/acs.joc.8b00178. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...