Immobilization of Trifluoromethyl-Substituted Pyridine-Oxazoline Ligand and Its Application in Asymmetric Continuous Flow Synthesis of Benzosultams
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37823216
PubMed Central
PMC10629231
DOI
10.1021/acs.joc.3c01671
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study presents an improved synthetic route to ligand (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole and its application as a highly active and enantioselective catalyst in the addition of arylboronic acids to cyclic N-sulfonylketimines. Immobilization of such a ligand was achieved using a commercially available starting material and a PS-PEG TentaGel S NH2 support, resulting in a stable heterogeneous catalyst. Although the anchored catalyst exhibited a slight reduction in enantioselectivity and a 4-fold decrease in reaction rate, it displayed remarkable stability, enabling 10 consecutive reaction cycles. Furthermore, the successful transition to a continuous flow system demonstrated even higher turnover numbers compared to batch arrangements. These findings provide valuable insights into the development of efficient flow reactors for continuous synthesis of benzosultams, further advancing the field of asymmetric catalysis.
Zobrazit více v PubMed
Yang G.; Zhang W. Renaissance of Pyridine-Oxazolines as Chiral Ligands for Asymmetric Catalysis. Chem. Soc. Rev. 2018, 47 (5), 1783–1810. 10.1039/C7CS00615B. PubMed DOI
Giofrè S.; Molteni L.; Beccalli E. M. Asymmetric Pd(II)-Catalyzed C–O, C–N, C–C Bond Formation Using Alkenes as Substrates: Insight into Recent Enantioselective Developments. Eur. J. Org. Chem. 2023, 26 (2), e20220097610.1002/ejoc.202200976. DOI
Lamb C. J. C.; Vilela F.; Lee A.-L. Pd(II)-Catalyzed Enantioselective Desymmetrization of Polycyclic Cyclohexenediones: Conjugate Addition versus Oxidative Heck. Org. Lett. 2019, 21 (21), 8689–8694. 10.1021/acs.orglett.9b03293. PubMed DOI
Hsu D.-S.; Wang M.-Y.; Huang J.-Y. Asymmetric Total Syntheses of (+)-5-Epi-Schisansphenin B and the Proposed Structure of (+)-15-Hydroxyacora-4(14),8-Diene. J. Org. Chem. 2022, 87 (1), 644–651. 10.1021/acs.joc.1c02627. PubMed DOI
Chen G.; Cao J.; Wang Q.; Zhu J. Desymmetrization of Prochiral Cyclopentenes Enabled by Enantioselective Palladium-Catalyzed Oxidative Heck Reaction. Org. Lett. 2020, 22 (1), 322–325. 10.1021/acs.orglett.9b04357. PubMed DOI
Chen Z.-M.; Liu J.; Guo J.-Y.; Loch M.; DeLuca R. J.; Sigman M. S. Palladium-Catalyzed Enantioselective Alkenylation of Alkenylbenzene Derivatives. Chem. Sci. 2019, 10 (30), 7246–7250. 10.1039/C9SC02380A. PubMed DOI PMC
Yuan Q.; Sigman M. S. Palladium-Catalyzed Enantioselective Relay Heck Arylation of Enelactams: Accessing α,β-Unsaturated δ-Lactams. J. Am. Chem. Soc. 2018, 140 (21), 6527–6530. 10.1021/jacs.8b02752. PubMed DOI PMC
Jiang Z.-Z.; Gao A.; Li H.; Chen D.; Ding C.-H.; Xu B.; Hou X.-L. Enantioselective Synthesis of Chromenes via a Palladium-Catalyzed Asymmetric Redox-Relay Heck Reaction. Chem. – Asian J. 2017, 12 (24), 3119–3122. 10.1002/asia.201701504. PubMed DOI
Zhang C.; Tutkowski B.; DeLuca R. J.; Joyce L. A.; Wiest O.; Sigman M. S. Palladium-Catalyzed Enantioselective Heck Alkenylation of Trisubstituted Allylic Alkenols: A Redox-Relay Strategy to Construct Vicinal Stereocenters. Chem. Sci. 2017, 8 (3), 2277–2282. 10.1039/C6SC04585E. PubMed DOI PMC
Herrera C. L.; Santiago J. V.; Pastre J. C.; Correia C. R. D. In Tandem Auto-Sustainable Enantioselective Heck-Matsuda Reactions Directly from Anilines. Adv. Synth. Catal. 2022, 364 (11), 1863–1872. 10.1002/adsc.202200205. DOI
de Oliveira Silva J.; Angnes R. A.; Menezes da Silva V. H.; Servilha B. M.; Adeel M.; Braga A. A. C.; Aponick A.; Correia C. R. D. Intermolecular Noncovalent Hydroxy-Directed Enantioselective Heck Desymmetrization of Cyclopentenol: Computationally Driven Synthesis of Highly Functionalized Cis-4-Arylcyclopentenol Scaffolds. J. Org. Chem. 2016, 81 (5), 2010–2018. 10.1021/acs.joc.5b02846. PubMed DOI
Zou C.; Wu H.; Ji Y.; Zhang P.; Cui H.; Huang G.; Zhang C. Palladium-Catalyzed Intramolecular Dehydrogenative Arylboration of Alkenes. Chin. J. Chem. 2022, 40 (20), 2437–2444. 10.1002/cjoc.202200317. DOI
He Y.-P.; Cao J.; Wu H.; Wang Q.; Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew. Chem., Int. Ed. 2021, 60 (13), 7093–7097. 10.1002/anie.202016001. PubMed DOI
Sun M.; Wu H.; Xia X.; Chen W.; Wang Z.; Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J. Org. Chem. 2019, 84 (20), 12835–12847. 10.1021/acs.joc.9b01372. PubMed DOI
Marrazzo J.-P. R.; Chao A.; Li Y.; Fleming F. F. Copper-Catalyzed Conjugate Additions to Isocyanoalkenes. J. Org. Chem. 2022, 87 (1), 488–497. 10.1021/acs.joc.1c02516. PubMed DOI
Jiang X.; Han B.; Xue Y.; Duan M.; Gui Z.; Wang Y.; Zhu S. Nickel-Catalysed Migratory Hydroalkynylation and Enantioselective Hydroalkynylation of Olefins with Bromoalkynes. Nat. Commun. 2021, 12 (1), 379210.1038/s41467-021-24094-9. PubMed DOI PMC
Deng Y.; Meng Y.; Yang Q.; Liu Z.; Fan R.; Chen J.; Fan B.. Nickel/Copper Co-Catalyzed Enantioselective Reductive Coupling of Oxabenzonorbornadienes with Vinyl Bromides. Adv. Synth. Catal. 2023n/a ( (n/a), ). 10.1002/adsc.202300633. DOI
Bahamonde A.; Al Rifaie B.; Martín-Heras V.; Allen J. R.; Sigman M. S. Enantioselective Markovnikov Addition of Carbamates to Allylic Alcohols for the Construction of α-Secondary and α-Tertiary Amines. J. Am. Chem. Soc. 2019, 141 (22), 8708–8711. 10.1021/jacs.9b03438. PubMed DOI PMC
Guo Z.-Q.; Xu H.; Wang X.; Wang Z.-Y.; Ma B.; Dai H.-X. C3-Arylation of Indoles with Aryl Ketones via C–C/C–H Activations. Chem. Commun. 2021, 57 (76), 9716–9719. 10.1039/D1CC03954G. PubMed DOI
Sietmann J.; Tenberge M.; Wahl J. M. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew. Chem., Int. Ed. 2023, 62 (7), e20221538110.1002/anie.202215381. PubMed DOI PMC
Ni S.-X.; Li Y.-L.; Ni H.-Q.; Bi Y.-X.; Sheng J.; Wang X.-S. Nickel-Catalyzed Hydromonofluoromethylation of Unactivated Alkenes for Expedient Construction of Primary Alkyl Fluorides. Chin. Chem. Lett. 2023, 34 (3), 10761410.1016/j.cclet.2022.06.037. DOI
Lux M. C.; Boby M. L.; Brooks J. L.; Tan D. S. Synthesis of Bicyclic Ethers by a Palladium-Catalyzed Oxidative Cyclization-Redox Relay-π-Allyl-Pd Cyclization Cascade Reaction. Chem. Commun. 2019, 55 (49), 7013–7016. 10.1039/C9CC03775F. PubMed DOI PMC
Race N. J.; Schwalm C. S.; Nakamuro T.; Sigman M. S. Palladium-Catalyzed Enantioselective Intermolecular Coupling of Phenols and Allylic Alcohols. J. Am. Chem. Soc. 2016, 138 (49), 15881–15884. 10.1021/jacs.6b11486. PubMed DOI PMC
Chen Z.-M.; Nervig C. S.; DeLuca R. J.; Sigman M. S. Palladium-Catalyzed Enantioselective Redox-Relay Heck Alkynylation of Alkenols To Access Propargylic Stereocenters. Angew. Chem., Int. Ed. 2017, 56 (23), 6651–6654. 10.1002/anie.201703089. PubMed DOI PMC
Zhang C.; Santiago C. B.; Crawford J. M.; Sigman M. S. Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. J. Am. Chem. Soc. 2015, 137 (50), 15668–15671. 10.1021/jacs.5b11335. PubMed DOI PMC
Wang M.-L.; Xu H.; Li H.-Y.; Ma B.; Wang Z.-Y.; Wang X.; Dai H.-X. Mizoroki–Heck Reaction of Unstrained Aryl Ketones via Ligand-Promoted C–C Bond Olefination. Org. Lett. 2021, 23 (6), 2147–2152. 10.1021/acs.orglett.1c00296. PubMed DOI
Chen J.; Li J.-H.; Zhu Y.-P.; Wang Q.-A. Copper-Catalyzed Enantioselective Arylboronation of Activated Alkenes Leading to Chiral 3,3′-Disubstituted Oxindoles. Org. Chem. Front. 2021, 8 (11), 2532–2536. 10.1039/D1QO00186H. DOI
Sandford C.; Fries L. R.; Ball T. E.; Minteer S. D.; Sigman M. S. Mechanistic Studies into the Oxidative Addition of Co(I) Complexes: Combining Electroanalytical Techniques with Parameterization. J. Am. Chem. Soc. 2019, 141 (47), 18877–18889. 10.1021/jacs.9b10771. PubMed DOI
Yang G.; Zhang W. A Palladium-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic Ketimines. Angew. Chem., Int. Ed. 2013, 52 (29), 7540–7544. 10.1002/anie.201302861. PubMed DOI
Zhou B.; Li K.; Jiang C.; Lu Y.; Hayashi T. Modified Amino Acid-Derived Phosphine-Imine Ligands for Palladium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Imines. Adv. Synth. Catal. 2017, 359 (11), 1969–1975. 10.1002/adsc.201700003. DOI
Jiang C.; Lu Y.; Hayashi T. High Performance of a Palladium Phosphinooxazoline Catalyst in the Asymmetric Arylation of Cyclic N-Sulfonyl Ketimines. Angew. Chem., Int. Ed. 2014, 53 (37), 9936–9939. 10.1002/anie.201406147. PubMed DOI
Li M.-F.; Miao A.-Q.; Zhu H.-Y.; Wang R.; Hao W.-J.; Tu S.-J.; Jiang B. Palladium/N,N′-Disulfonyl Bisimidazoline-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic N-Sulfonyl Ketimines. J. Org. Chem. 2020, 85 (21), 13602–13609. 10.1021/acs.joc.0c01722. PubMed DOI
Qiu Z.; Li Y.; Zhang Z.; Teng D. Spiro Indane-Based Phosphine–Oxazoline Ligands for Palladium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Imines. Transition Met. Chem. 2019, 44 (7), 649–654. 10.1007/s11243-019-00329-z. DOI
Quan M.; Yang G.; Xie F.; D Gridnev I.; Zhang W. Pd(Ii)-Catalyzed Asymmetric Addition of Arylboronic Acids to Cyclic N -Sulfonyl Ketimine Esters and a DFT Study of Its Mechanism. Org. Chem. Front. 2015, 2 (4), 398–402. 10.1039/C4QO00347K. DOI
Álvarez-Casao Y.; Monge D.; Álvarez E.; Fernández R.; Lassaletta J. M. Pyridine–Hydrazones as N,N′-Ligands in Asymmetric Catalysis: Pd(II)-Catalyzed Addition of Boronic Acids to Cyclic Sulfonylketimines. Org. Lett. 2015, 17 (20), 5104–5107. 10.1021/acs.orglett.5b02613. PubMed DOI
Schrapel C.; Peters R. Exogenous-Base-Free Palladacycle-Catalyzed Highly Enantioselective Arylation of Imines with Arylboroxines. Angew. Chem., Int. Ed. 2015, 54 (35), 10289–10293. 10.1002/anie.201501846. PubMed DOI
Quan M.; Wu L.; Yang G.; Zhang W. Pd(II), Ni(II) and Co(II)-Catalyzed Enantioselective Additions of Organoboron Reagents to Ketimines. Chem. Commun. 2018, 54 (74), 10394–10404. 10.1039/C8CC04932G. PubMed DOI
Jiang T.; Wang Z.; Xu M.-H. Rhodium-Catalyzed Asymmetric Arylation of Cyclic N-Sulfonyl Aryl Alkyl Ketimines: Efficient Access to Highly Enantioenriched α-Tertiary Amines. Org. Lett. 2015, 17 (3), 528–531. 10.1021/ol503537w. PubMed DOI
Nishimura T.; Noishiki A.; Chit Tsui G.; Hayashi T. Asymmetric Synthesis of (Triaryl)Methylamines by Rhodium-Catalyzed Addition of Arylboroxines to Cyclic N-Sulfonyl Ketimines. J. Am. Chem. Soc. 2012, 134 (11), 5056–5059. 10.1021/ja300697c. PubMed DOI
Döpp D.; Lauterfeld P.; Schneider M.; Schneider D.; Henkel G.; Issac Y. A. el S.; Elghamry I. Photoisomerization of Sultams Derived from Saccharin; Part 4: Generation of Cyclic Sulfine Hydroxamic Acids. Synthesis 2001, 112 (8), 1228–1235. 10.1055/s-2001-15069. DOI
Elghamry I.; Döpp D. A New Photochemical Ring Expansion of 1,2-Benzisothiazole 1,1-Dioxides. Tetrahedron Lett. 2001, 42 (33), 5651–5653. 10.1016/S0040-4039(01)00992-3. DOI
Reddy K. N.; Rao M. V. K.; Sridhar B.; Reddy B. V. S. PdII-Catalyzed Spiroannulation of Cyclic N-Sulfonyl Ketimines with Aryl Iodides through C–H Bond Activation. Eur. J. Org. Chem. 2017, 2017 (28), 4085–4090. 10.1002/ejoc.201700569. DOI
Penso M.; Albanese D.; Landini D.; Lupi V.; Tagliabue A. Complementary Heterogeneous/Homogeneous Protocols for the Synthesis of Densely Functionalized Benzo[d]Sultams: C–C Bond Formation by Intramolecular Nucleophilic Aromatic Fluorine Displacement. J. Org. Chem. 2008, 73 (17), 6686–6690. 10.1021/jo800930g. PubMed DOI
Hallman K.; Macedo E.; Nordström K.; Moberg C. Enantioselective Allylic Alkylation Using Polymer-Supported Palladium Catalysts. Tetrahedron: Asymmetry 1999, 10 (20), 4037–4046. 10.1016/S0957-4166(99)00416-4. DOI
Aranda C.; Cornejo A.; Fraile J. M.; García-Verdugo E.; Gil M. J.; Luis S. V.; Mayoral J. A.; Martinez-Merino V.; Ochoa Z. Efficient Enhancement of Copper-Pyridineoxazoline Catalysts through Immobilization and Process Design. Green Chem. 2011, 13 (4), 983–990. 10.1039/c0gc00775g. DOI
Bartáček J.; Váňa J.; Drabina P.; Svoboda J.; Kocúrik M.; Sedlák M. Recoverable Polystyrene-Supported Palladium Catalyst for Construction of All-Carbon Quaternary Stereocenters via Asymmetric 1,4-Addition of Arylboronic Acids to Cyclic Enones. React. Funct. Polym. 2020, 153, 10461510.1016/j.reactfunctpolym.2020.104615. DOI
Lestini E.; Blackman L. D.; Zammit C. M.; Chen T.; Williams R. J.; Inam M.; Couturaud B.; O’Reilly R. K. Palladium-Polymer Nanoreactors for the Aqueous Asymmetric Synthesis of Therapeutic Flavonoids. Polym. Chem. 2018, 9 (7), 820–823. 10.1039/C7PY02050C. DOI
Zhou L.; Qiu J.; Wang M.; Xu Z.; Wang J.; Chen T. Fabrication of Nanoreactors Based on End-Functionalized Polymethacrylate and Their Catalysis Application. J. Inorg. Organomet. Polym. Mater. 2020, 30 (11), 4569–4577. 10.1007/s10904-020-01599-2. DOI
Pezzetta C.; Bonifazi D.; Davidson R. W. M. Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Org. Lett. 2019, 21 (22), 8957–8961. 10.1021/acs.orglett.9b03338. PubMed DOI
Moradi W. A.; Schlegel G.; Schnatterer A.; Volz F.. Catalytic Hydrogenation of Substituted Cyanopyridines and Process for Preparing Substituted Pyridylmethylbenzamides. WO2016173998A1, November 3, 2016.
Shen G.; Osako T.; Nagaosa M.; Uozumi Y. Aqueous Asymmetric 1,4-Addition of Arylboronic Acids to Enones Catalyzed by an Amphiphilic Resin-Supported Chiral Diene Rhodium Complex under Batch and Continuous-Flow Conditions. J. Org. Chem. 2018, 83 (14), 7380–7387. 10.1021/acs.joc.8b00178. PubMed DOI