• This record comes from PubMed

Effect of Stacking Sequence on Mechanical Properties and Microstructural Features within Al/Cu Laminates

. 2023 Oct 04 ; 16 (19) : . [epub] 20231004

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SP2023/022 VSB - Technical University of Ostrava

The study presents a method to prepare Al/Cu laminated conductors featuring two different stacking sequences using rotary swaging, a method of intensive plastic deformation. The primary focus of the work was to perform detailed characterization of the effects of room temperature swaging on the development of microstructures, including the Al/Cu interfaces, and internal misorientations pointed to the presence of residual stress within the laminates. The results revealed that both the Al and Cu components of the final laminates with 5 mm in diameter featured fine, more or less equiaxed, grains with no dominating preferential texture orientations (the maximum observed texture intensity was 2.3 × random for the Cu components of both the laminates). This fact points to the development of dynamic restoration processes during swaging. The analyses of misorientations within the grains showed that residual stress was locally present primarily in the Cu components. The Al components did not feature a substantial presence of misorientations, which confirms the dynamic recrystallization. Tensile testing revealed that the laminates with both the designed stacking sequences exhibited comparable UTS (ultimate tensile strength) of almost 280 MPa. However, notable differences were observed with regard to the plasticity (~3.5% compared to less than 1%). The laminate consisting of Al sheath and Cu wires exhibited very low plasticity as a result of significant work hardening of Al; this hypothesis was also confirmed with microhardness measurements. Observations of the interfaces confirmed satisfactory bonding of both the metallic components.

See more in PubMed

Bulina N.V., Titkov A.I., Isaev D.D., Makarova S.V., Baev S.G., Vorobyev A.M., Bessmeltsev V.P., Lyakhov N.Z. Selective Laser Melting of Zn-Si-Substituted Hydroxyapatite. Russ. Chem. Bull. 2021;70:1682–1689. doi: 10.1007/s11172-021-3270-8. DOI

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI

Shishkovsky I., Kakovkina N., Nosova E., Khaimovich A. Laser In Situ Synthesis of Gradient Fe-Ti Composite during Direct Energy Deposition Process. J. Manuf. Mater. Process. 2023;7:66. doi: 10.3390/jmmp7020066. DOI

Gorunov A.I. Additive Manufacturing of Ti6Al4V Parts Using Ultrasonic Assisted Direct Energy Deposition. J. Manuf. Process. 2020;59:545–556. doi: 10.1016/j.jmapro.2020.10.024. DOI

Mimura K., Matsumoto K., Isshiki M. Purification of Hafnium by Hydrogen Plasma Arc Melting. Mater. Trans. 2011;52:159–165. doi: 10.2320/matertrans.M2010296. DOI

Tuissi A., Rondelli G., Bassani P. Plasma Arc Melting (PAM) and Corrosion Resistance of Pure NiTi Shape Memory Alloys. Shape Mem. Superelasticity. 2015;1:50–57. doi: 10.1007/s40830-015-0011-6. DOI

Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC

Vityaz P.A., Ilyushchanka A.P., Savich V.V. Powder Metallurgy in Belarus and Global Developmental Trends. Russ. J. Non-Ferrous Met. 2019;60:775–781. doi: 10.3103/S1067821219060191. DOI

Yan Y., Priya S. Multiferroic Magnetoelectric Composites/Hybrids. In: Kim C.-S., Randow C., Sano T., editors. Hybrid and Hierarchical Composite Materials. Springer International Publishing; Cham, Switzerland: 2015. pp. 95–160.

Zhao Y., Peng L., Yu G. Electrochemical Hierarchical Composites. In: Kim C.-S., Randow C., Sano T., editors. Hybrid and Hierarchical Composite Materials. Springer International Publishing; Cham, Switzerland: 2015. pp. 239–286.

Sola A., Bellucci D., Cannillo V. Functionally Graded Materials for Orthopedic Applications—An Update on Design and Manufacturing. Biotechnol. Adv. 2016;34:504–531. doi: 10.1016/j.biotechadv.2015.12.013. PubMed DOI

Ghorbanpour S., Sahu S., Deshmukh K., Borisov E., Riemslag T., Reinton E., Bertolo V., Jiang Q., Popovich A., Shamshurin A., et al. Effect of Microstructure Induced Anisotropy on Fatigue Behaviour of Functionally Graded Inconel 718 Fabricated by Additive Manufacturing. Mater. Charact. 2021;179:111350. doi: 10.1016/j.matchar.2021.111350. DOI

Rogachev A.S., Vadchenko S.G., Kovalev D.Y., Kochetov N.A., Zhukovskyi M., Orlova T., Mukasyan A.S. Long Term Stability of a High-Entropy CoCrFeNiTi Alloy Fabricated by Mechanical Alloying. J. Alloy. Compd. 2023;931:167470. doi: 10.1016/j.jallcom.2022.167470. DOI

Samoilova O., Shaburova N., Ostovari Moghaddam A., Trofimov E. Al0.25CoCrFeNiSi0.6 High Entropy Alloy with High Hardness and Improved Wear Resistance. Mater. Lett. 2022;328:133190. doi: 10.1016/j.matlet.2022.133190. DOI

Terekhov I.V., Chistyakov E.M. Binders Used for the Manufacturing of Composite Materials by Liquid Composite Molding. Polymers. 2021;14:87. doi: 10.3390/polym14010087. PubMed DOI PMC

Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloy. Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI

Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI

Georgarakis K., Dudina D.V., Kvashnin V.I. Metallic Glass-Reinforced Metal Matrix Composites: Design, Interfaces and Properties. Materials. 2022;15:8278. doi: 10.3390/ma15238278. PubMed DOI PMC

Permin D.A., Egorov S.V., Belyaev A.V., Balabanov S.S., Koshkin V.A., Boldin M.S., Novikova A.V., Timofeev O.V., Ladenkov I.V. Microwave Sintering of IR-Transparent Y2O3–MgO Composite Ceramics. Ceram. Int. 2023;49:7236–7244. doi: 10.1016/j.ceramint.2022.06.062. DOI

Gribkova O.L., Nekrasov A.A. Spectroelectrochemistry of Electroactive Polymer Composite Materials. Polymers. 2022;14:3201. doi: 10.3390/polym14153201. PubMed DOI PMC

Sharma A., Zadorozhnyy M., Stepashkin A., Kvaratskheliya A., Korol A., Moskovskikh D., Kaloshkin S., Zadorozhnyy V. Investigation of Thermophysical Properties of Zr-Based Metallic Glass-Polymer Composite. Metals. 2021;11:1412. doi: 10.3390/met11091412. DOI

Terziyan T.V., Safronov A.P., Beketov I.V., Medvedev A.I., Armas S.F., Kurlyandskaya G.V. Adhesive and Magnetic Properties of Polyvinyl Butyral Composites with Embedded Metallic Nanoparticles. Sensors. 2021;21:8311. doi: 10.3390/s21248311. PubMed DOI PMC

Smotrakov V.G., Eremkin V.V., Sitalo E.I., Malomyzheva N.V., Boldyrev N.A. Composite Materials Ferropiezoelectric Ceramics-Polymer for Hydroacoustic Receivers. J. Adv. Dielectr. 2023;13:2350007. doi: 10.1142/S2010135X23500078. DOI

Elanchezhian C., Vijaya Ramnath B., Ramakrishnan G., Sripada Raghavendra K.N., Muralidharan M., Kishore V. Review on Metal Matrix Composites for Marine Applications. Mater. Today Proc. 2018;5:1211–1218. doi: 10.1016/j.matpr.2017.11.203. DOI

Vijaya Ramnath B., Parswajinan C., Dharmaseelan R., Thileepan K., Nithin Krishna K. A Review on Aluminium Metal Matrix Composites. Mater. Today Proc. 2021;46:4341–4343. doi: 10.1016/j.matpr.2021.03.600. DOI

Huang Z.M., Kim H.M., Youn J.R., Song Y.S. Injection Molding of Carbon Fiber Composite Automotive Wheel. Fibers Polym. 2019;20:2665–2671. doi: 10.1007/s12221-019-9636-y. DOI

Elseify L.A., Midani M., El-Badawy A.A., Seyam A.-F.M., Jawaid M. Benchmarking Automotive Nonwoven Composites from Date Palm Midrib and Spadix Fibers in Comparison to Commercial Leaf Fibers. Biomass Convers. Biorefinery. 2023:1–15. doi: 10.1007/s13399-023-03910-w. DOI

Cherepanov A.N., Mali V.I., Maliutina I.N., Orishich A.M., Malikov A.G., Drozdov V.O. Laser Welding of Stainless Steel to Titanium Using Explosively Welded Composite Inserts. Int. J. Adv. Manuf. Technol. 2017;90:3037–3043. doi: 10.1007/s00170-016-9657-2. DOI

Ozerov M., Povolyaeva E., Stepanov N., Ventzke V., Dinse R., Kashaev N., Zherebtsov S. Laser Beam Welding of a Ti-15Mo/TiB Metal–Matrix Composite. Metals. 2021;11:506. doi: 10.3390/met11030506. DOI

Zeng X., Wang Y., Li X., Li X., Zhao T. Effect of Inert Gas-Shielding on the Interface and Mechanical Properties of Mg/Al Explosive Welding Composite Plate. J. Manuf. Process. 2019;45:166–175. doi: 10.1016/j.jmapro.2019.07.007. DOI

Li F.S., Xu R.Z., Wei Z.C., Sun X.F., Wang P.F., Li X.F., Li Z. Investigation on the Electron Beam Welding of Al/Cu Composite Plates. Trans. Indian Inst. Met. 2020;73:353–363. doi: 10.1007/s12666-019-01846-2. DOI

Sun H., Pan N. Mechanical Characterization of the Interfaces in Laminated Composites. Compos. Struct. 2006;74:25–29. doi: 10.1016/j.compstruct.2005.03.005. DOI

Wang E., Lv L., Kang F., Li S., Li J., Tian Y., Jiang W., Song X. Enhanced Properties of Ti/Al Laminated Composite Reinforced by High-Entropy Alloy Particles. Metals. 2023;13:1227. doi: 10.3390/met13071227. DOI

Romankov S., Shchetinin I.V., Park Y.C., Yoo J.H., Yoon J.M. Formation of Nanolaminated Amorphous/Crystalline Structure in the Multicomponent System under Severe Plastic Deformation. Mater. Lett. 2012;85:109–112. doi: 10.1016/j.matlet.2012.06.096. DOI

Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI

Krasnikov V.S., Mayer A.E. Initiation and Mechanisms of Plasticity in Bimetallic Al-Cu Composite. Metals. 2023;13:102. doi: 10.3390/met13010102. DOI

Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.

Li J., Chu F., Feng Y. Effect of Atomic Diffusion on Interfacial Heat Transfer and Tensile Property of Copper/Aluminum Composites. Mater. Today Commun. 2023;36:106757. doi: 10.1016/j.mtcomm.2023.106757. DOI

Matli P.R., Fareeha U., Shakoor R.A., Mohamed A.M.A. A Comparative Study of Structural and Mechanical Properties of Al–Cu Composites Prepared by Vacuum and Microwave Sintering Techniques. J. Mater. Res. Technol. 2018;7:165–172. doi: 10.1016/j.jmrt.2017.10.003. DOI

Zhang J., Wang B., Chen G., Wang R., Miao C., Zheng Z., Tang W. Formation and Growth of Cu–Al IMCs and Their Effect on Electrical Property of Electroplated Cu/Al Laminar Composites. Trans. Nonferrous Met. Soc. China. 2016;26:3283–3291. doi: 10.1016/S1003-6326(16)64462-X. DOI

Ren Y., Chen J., Zhao B. Light Metals 2021: 50th Anniversary Edition. Springer; Berlin/Heidelberg, Germany: 2021. Mechanism Behind Al/Cu Interface Reaction: The Kinetics and Diffusion of Cu in Forming Different Intermetallic Compounds; pp. 100–104.

Zykova A., Chumaevskii A., Gusarova A., Kalashnikova T., Fortuna S., Savchenko N., Kolubaev E., Tarasov S. Microstructure of In-Situ Friction Stir Processed Al-Cu Transition Zone. Metals. 2020;10:818. doi: 10.3390/met10060818. DOI

Kunčická L., Kocich R. Deformation Behaviour of Cu-Al Clad Composites Produced by Rotary Swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI

Bagherpour E., Pardis N., Reihanian M., Ebrahimi R. An Overview on Severe Plastic Deformation: Research Status, Techniques Classification, Microstructure Evolution, and Applications. Int. J. Adv. Manuf. Technol. 2019;100:1647–1694. doi: 10.1007/s00170-018-2652-z. DOI

Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI

Nejadseyfi O., Shokuhfar A., Sadeghi S. Feasibility of Attaining Uniform Grain Structure and Enhanced Ductility in Aluminum Alloy by Employing a Beveled Punch in Equal-Channel Angular Pressing. Mater. Sci. Eng. A. 2016;651:461–466. doi: 10.1016/j.msea.2015.08.050. DOI

Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI

Kocich R., Kunčická L., Král P., Macháčková A. Sub-Structure and Mechanical Properties of Twist Channel Angular Pressed Aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a Method for Increasing the Efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI

Gu C.F., Toth L.S. Texture Development and Grain Refinement in Non-Equal-Channel Angular-Pressed Al. Scr. Mater. 2012;67:33–36. doi: 10.1016/j.scriptamat.2012.03.014. DOI

Asgari M., Fereshteh-Saniee F., Pezeshki S.M., Barati M. Non-Equal Channel Angular Pressing (NECAP) of AZ80 Magnesium Alloy: Effects of Process Parameters on Strain Homogeneity, Grain Refinement and Mechanical Properties. Mater. Sci. Eng. A. 2016;678:320–328. doi: 10.1016/j.msea.2016.09.102. DOI

Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of Deformation Behavior, Structure and Mechanical Properties of the AlSiMnFe Alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the METAL 2013-22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.

Jahedi M., Paydar M.H. Study on the Feasibility of the Torsion Extrusion (TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder. Mater. Sci. Eng. A. 2010;527:5273–5279. doi: 10.1016/j.msea.2010.04.088. DOI

Liu J., Shukui L., Xiaoqing Z., Zhaohui Z., Haiyun Z., Yingchun W. Adiabatic Shear Banding in a Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion. Scr. Mater. 2008;59:1271–1274. doi: 10.1016/j.scriptamat.2008.08.036. DOI

Korznikova G.F., Nazarov K.S., Khisamov R.K., Sergeev S.N., Shayachmetov R.U., Khalikova G.R., Baimova J.A., Glezer A.M., Mulyukov R.R. Intermetallic Growth Kinetics and Microstructure Evolution in Al-Cu-Al Metal-Matrix Composite Processed by High Pressure Torsion. Mater. Lett. 2019;253:412–415. doi: 10.1016/j.matlet.2019.07.124. DOI

Permyakova I.E., Blinova E.N., Shchetinin I.V., Savchenko E.S. Amorphous-Alloy-Based Composites Prepared by High-Pressure Torsion. Russ. Metall. 2019;2019:994–1001. doi: 10.1134/S0036029519100203. DOI

Derakhshan J.F., Parsa M.H., Jafarian H.R. Microstructure and Mechanical Properties Variations of Pure Aluminum Subjected to One Pass of ECAP-Conform Process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI

Murashkin M., Medvedev A., Kazykhanov V., Krokhin A., Raab G., Enikeev N., Valiev R. Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al 6101 Alloy Processed via ECAP-Conform. Metals. 2015;5:2148–2164. doi: 10.3390/met5042148. DOI

Xu S., Zhao G., Ren X., Guan Y. Numerical Investigation of Aluminum Deformation Behavior in Three-Dimensional Continuous Confined Strip Shearing Process. Mater. Sci. Eng. A. 2008;476:281–289. doi: 10.1016/j.msea.2007.05.003. DOI

Zhao Z.H., Xu X.J., Zhou H., Zhu X.D., Cheng C., Fei Z.D. Influence of Rolling Reduction Ratio on Continuous Confined Strip Shearing Deformation Procedure Using Finite Element Analysis. Adv. Mater. Res. 2011;284–286:913–917. doi: 10.4028/www.scientific.net/AMR.284-286.913. DOI

Lee H.H., Park H.K., Jung J., Hwang K.J., Kim H.S. Microstructural Tailoring in Reverse Gradient-Structured Copper Sheet Using Single-Roll Angular-Rolling and Subsequent Annealing. Mater. Sci. Eng. A. 2019;764:138258. doi: 10.1016/j.msea.2019.138258. DOI

Lee H.H., Yoon J.I., Kim H.S. Single-Roll Angular-Rolling: A New Continuous Severe Plastic Deformation Process for Metal Sheets. Scr. Mater. 2018;146:204–207. doi: 10.1016/j.scriptamat.2017.11.043. DOI

Yang Y., Nie J., Mao Q., Zhao Y. Improving the Combination of Electrical Conductivity and Tensile Strength of Al 1070 by Rotary Swaging Deformation. Results Phys. 2019;13:102236. doi: 10.1016/j.rinp.2019.102236. DOI

Gan W.M., Huang Y.D., Wang R., Wang G.F., Srinivasan A., Brokmeier H.G., Schell N., Kainer K.U., Hort N. Microstructures and Mechanical Properties of Pure Mg Processed by Rotary Swaging. Mater. Des. 2014;63:83–88. doi: 10.1016/j.matdes.2014.05.057. DOI

Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction, ATEX—Software. 2017. [(accessed on 20 August 2023)]. Available online: www.atex-software.eu.

Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2019. [(accessed on 10 August 2023)]. Available online: https://www.iso.org/standard/61856.html.

Gennesson M., Zollinger J., Daloz D., Rouat B., Demurger J., Combeau H. Three Dimensional Methodology to Characterize Large Dendritic Equiaxed Grains in Industrial Steel Ingots. Materials. 2018;11:1007. doi: 10.3390/ma11061007. PubMed DOI PMC

Pippan R., Scheriau S., Taylor A., Hafok M., Hohenwarter A., Bachmaier A. Saturation of Fragmentation During Severe Plastic Deformation. Annu. Rev. Mater. Res. 2010;40:319–343. doi: 10.1146/annurev-matsci-070909-104445. DOI

Suehiro K., Nishimura S., Horita Z., Mitani S., Takanashi K., Fujimori H. High-Pressure Torsion for Production of Magnetoresistance in Cu–Co Alloy. J. Mater. Sci. 2008;43:7349–7353. doi: 10.1007/s10853-008-2813-9. DOI

Ohsaki S., Kato S., Tsuji N., Ohkubo T., Hono K. Bulk Mechanical Alloying of Cu–Ag and Cu/Zr Two-Phase Microstructures by Accumulative Roll-Bonding Process. Acta Mater. 2007;55:2885–2895. doi: 10.1016/j.actamat.2006.12.027. DOI

Wilde G., Rösner H. Stability Aspects of Bulk Nanostructured Metals and Composites. J. Mater. Sci. 2007;42:1772–1781. doi: 10.1007/s10853-006-0986-7. DOI

Sabirov I., Schöberl T., Pippan R. Fabrication of a W-25%Cu Nanocomposite by High Pressure Torsion. Mater. Sci. Forum. 2006;503–504:561–566. doi: 10.4028/www.scientific.net/MSF.503-504.561. DOI

Humphreys F.J., Hetherly M., Rollett A., Rohrer G.S. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.

Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.

Newest 20 citations...

See more in
Medvik | PubMed

Structural Phenomena Introduced by Rotary Swaging: A Review

. 2024 Jan 18 ; 17 (2) : . [epub] 20240118

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...