Characterization of hybrid organo-silica monoliths for possible application in the gradient elution of peptides
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
23-07581S
Czech Science Foundation
- Keywords
- gradient elution, hybrid organo-silica monoliths, kinetic analysis, peptides,
- MeSH
- Methacrylates chemistry MeSH
- Silicon Dioxide * chemistry MeSH
- Peptides * chemistry MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ethylene dimethacrylate MeSH Browser
- Methacrylates MeSH
- Silicon Dioxide * MeSH
- Peptides * MeSH
- Water MeSH
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.
Department of Chemistry and Physics Barry University Miami Shores Florida USA
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
See more in PubMed
Tennikova TB, Bleha M, Švec F, Almazova, TV, Belenkii BG. High-performance membrane chromatography of proteins, a novel method of protein separation. J Chromatogr A. 1991;555:97-107. https://doi.org/10.1016/S0021-9673(01)87170-3
Svec F, Frechet JMJ. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem. 1992;64:820-822. https://doi.org/10.1021/ac00031a022
Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250-273. https://doi.org/10.1021/ac504059c
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated porous silica rods as separation media for RP liquid chromatography. Anal Chem. 1996;68:3498-3501. https://doi.org/10.1021/ac960281m
Tanaka N, McCalley DV. Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal Chem. 2016;88:279-298. https://doi.org/10.1021/acs.analchem.5b04093
Ou J, Liu Z, Wang H, Lin H, Dong J, Zou H. Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC. Electrophoresis 2015;36:62-75. https://doi.org/10.1002/elps.201400316
Zajickova Z. Advances in the development and applications of organic-silica hybrid monoliths. J Sep Sci. 2017;40:25-48. https://doi.org/10.1002/jssc.201600774
Zajickova Z. Review of recent advances in development and applications of organic-silica hybrid monoliths. J Sep Sci. 2023;46(18):e2300396. https://doi.org/10.1002/jssc.202300396
Wu M, Wu R, Wang F, Ren L, Dong J, Liu Z. et al. “One-Pot” Process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem. 2009;81:3529-3536. https://doi.org/10.1021/ac9000749
Liu Z, Liu J, Liu Z, Wang H, Ou J, Ye M. et al. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis. J Chromatogr A. 2017;1498:29-36. https://doi.org/10.1016/j.chroma.2017.01.029
Tan W, Chang F, Shu Y, Chen Y, Liu J, Chen Y, et al. The synthesis of Gemini-type sulfobetaine based hybrid monolith and its application in hydrophilic interaction chromatography for small polar molecular. Talanta 2017;173:113-122. https://doi.org/10.1016/j.talanta.2017.05.072
Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved “one-pot” approach for hydrophilic-interaction liquid chromatography (HILIC). Anal Chem. 2012;84:2721-2728. https://doi.org/10.1021/ac3001429
Lin Z, Tan X, Yu R, Lin J, Yin X, Zhang L, et al. One-pot preparation of glutathione-silica hybrid monolith for mixed-mode capillary liquid chromatography based on “thiol-ene” click chemistry. J Chromatogr A. 2014;1355:228-237. https://doi.org/10.1016/j.chroma.2014.06.023
Wang H, Hu W, Zheng Q, Bian W, Lin Z. One-pot preparation of mercaptotetrazole-silica hybrid monoliths by the thiol-ene click reaction for mixed-mode capillary liquid chromatography. J Sep Sci. 2017;40:2344-2354. https://doi.org/10.1002/jssc.201700220
Lin Z, Huang H, Li S, Wang J, Tan X, Zhang L, et al. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J Chromatogr A. 2013;1271:115-123. https://doi.org/10.1016/j.chroma.2012.11.038
Li Q, Lü C, Li H, Liu Y, Wang H, Wang X, et al. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A. 2012;1256:114-120. https://doi.org/10.1016/j.chroma.2012.07.063
Yang Q, Huang D, Jin S, Zhou H, Zhou P. One-step synthesis of an organic-inorganic hybrid boronate affinity monolithic column with synergistic co-monomers. Analyst 2013;138:4752-4755. https://doi.org/10.1039/C3AN00847A
Wu C, Liang Y, Yang K, Min Y, Liang Z, Zhang L, et al. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic Separation. Anal Chem. 2016;88:1521-1525. https://doi.org/10.1021/acs.analchem.5b04641
Wu C, Liang Y, Zhu X, Zhao Q, Fang F, Zhang X, et al. Macro-mesoporous organosilica monoliths with bridged-ethylene and terminal-vinyl: High-density click functionalization for chromatographic separation. Anal Chim Acta. 2018;1038:198-205. https://doi.org/10.1016/j.aca.2018.07.004
Liang Y, Jin Y, Wu Z, Tucholski T, Brown K A, Zhang L, et al. Bridged hybrid monolithic column coupled to high-resolution mass spectrometry for top-down proteomics. Anal Chem. 2019;91:1743-1747. https://doi.org/10.1021/acs.analchem.8b05817
Wu C, Liang Y, Liang Z, Zhang L, Zhang Y. Ethane-bridged hybrid monoliths with well-defined mesoporosity and great stability for high-performance peptide separation. Anal Chim Acta. 2018;1019:128-134. https://doi.org/10.1016/j.aca.2018.02.033
Liang Y, Wang C, Liang Z, Zhang L, Zhang Y. C18-Functionalized amine-bridged hybrid monoliths for mass spectrometry-friendly peptide separation and highly sensitive proteomic analysis. Anal Chem. 2022;94:6084-6088. https://doi.org/10.1021/acs.analchem.1c04405
Sun Y, Liang Y, Wang C, Zhao B, Liang Z, Zhang, X, et al. Enhancing top-down characterization of membrane proteoforms with c8-functional amine-bridged hybrid monoliths. Anal Chem. 2023;95:6846-6853. https://doi.org/10.1021/acs.analchem.2c05401
Weed A-M K, Dvornik J, Stefancin J J, Gyapong A A, Svec F, Zajickova Z. Photopolymerized organo-silica hybrid monolithic columns: characterization of their performance in capillary liquid chromatography. J Sep Sci. 2013;36:270-278. https://doi.org/10.1002/jssc.201200760
Gharbharan D, Britsch D, Soto G, Weed A-M K, Svec F, Zajickova Z. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography. J Chromatogr A. 2015;1408:101-107. https://doi.org/10.1016/j.chroma.2015.06.069
Narciso Meirelles L, Silva Campos T, Rodriguez Z, Hernandez R, Svec F, Zajickova Z. “Single-pot” approach towards the preparation of alkyl and polyfluoroalkyl organo-silica monolithic capillaries for RP liquid chromatography. J Sep Sci. 2018;41:3669-3676. https://doi.org/10.1002/jssc.201800688
Cramers C A, Rijks J A, Schutjes C P M. Factors determining flow rate in chromatographic columns. Chromatographia 1981;14:439-444. https://doi.org/10.1007/BF02262882
Urban J, Eeltink S, Jandera P, Schoenmakers P J. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. J Chromatogr A. 2008;1182:161-168. https://doi.org/10.1016/j.chroma.2008.01.006
Snyder LR, Dolan JW. High-performance gradient elution: the practical application of the linear-solvent-strength model. Hoboken, NJ: Wiley; 2006.
Jandera P, Churáček J. Gradient elution in column liquid chromatography: theory and practice. New York, NY: Elsevier; 1985.
Jandera P. Advances in chromatography. Boca Raton, FL: CRC Press; 2004.
Schellinger A P, Carr P W. A practical approach to transferring linear gradient elution methods. J Chromatogr A. 2005;1077:110-119. https://doi.org/10.1016/j.chroma.2005.04.088
den Uijl MJ, Schoenmakers PJ, Schulte GK, Stoll DR, van Bommel MR, Pirok, BWJ. Measuring and using scanning-gradient data for use in method optimization for liquid chromatography. J Chromatogr A. 2021;1636:461780. https://doi.org/10.1016/j.chroma.2020.461780
Neue UD. Theory of peak capacity in gradient elution. J Chromatogr A. 2005;1079:153-161. https://doi.org/10.1016/j.chroma.2005.03.008
Neue UD. Peak capacity in unidimensional chromatography. J Chromatogr A. 2008;1184:107-130. https://doi.org/10.1016/j.chroma.2007.11.113
Wang X, Stoll D R, Schellinger A P, Carr P W. Peak capacity optimization of peptide separations in RP gradient elution chromatography: fixed column format. Anal Chem. 2006;78:3406-3416. https://doi.org/10.1021/ac0600149
Wang X, Stoll D R, Carr P W, Schoenmakers PJ. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography. J Chromatogr A. 2006;1125:177-181. https://doi.org/10.1016/j.chroma.2006.05.048
Huo Y, Schoenmakers P J, Kok W Th. Efficiency of methacrylate monolithic columns in RP liquid chromatographic separations. J Chromatogr A. 2007;1175:81-88. https://doi.org/10.1016/j.chroma.2007.10.048
Nischang I. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J Chromatogr A. 2013;1287:39-58. https://doi.org/10.1016/j.chroma.2012.11.01
Urban J, Jandera P, Schoenmakers P. Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. J Chromatogr A. 2007;1150:279-289. https://doi.org/10.1016/j.chroma.2006.09.065
Dores-Sousa JL, Terryn H, Eeltink S. Morphology optimization and assessment of the performance limits of high-porosity nanostructured polymer monolithic capillary columns for proteomics analysis. Anal Chim Acta. 2020;1124:176-183. https://doi.org/10.1016/j.aca.2020.05.019
Nischang I. Impact of biomolecule solute size on the transport and performance characteristics of analytical porous polymer monoliths. J Chromatogr A. 2014;1354:56-64. https://doi.org/10.1016/j.chroma.2014.05.053
Urban J, Svec F, Frechet JMJ. Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J Chromatogr A. 2010;1217:8212-8221. https://doi.org/10.1016/j.chroma.2010.10.100
Komendová M, Svobodová P, Urban J. Photografting of polymer monoliths by a crosslinking monomer. J Chromatogr A. 2020;1631:461558. https://doi.org/10.1016/j.chroma.2020.461558
Gilar M, Daly AE, Kele M, Neue UD, Gebler J C. Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography. J Chromatogr A. 2004;1061:183-192. https://doi.org/10.1016/j.chroma.2004.10.092
Gritti F, Guiochon G. Separations by gradient elution: why are steep gradient profiles distorted and what is their impact on resolution in RP liquid chromatography. J Chromatogr A. 2014;1344:66-75. https://doi.org/10.1016/j.chroma.2014.04.010
Urban J, Nechvátalová M, Hekerle L. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography. J Sep Sci. 2022;45:3319-3327. https://doi.org/10.1002/jssc.202200201
Vivó-Truyols G, van der Wal Sj, Schoenmakers P J. Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first- and second-dimensions: A pareto-optimality approach. Anal Chem. 2010;82:8525-8536. https://doi.org/10.1021/ac101420f
Jandera P, Hajek T. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: short silica monolithic columns. J Chromatogr A. 2015;1410:76-89. https://doi.org/10.1016/j.chroma.2015.07.070
Gzil P, De Smet J, Desmet G. A discussion of the possible ways to improve the performance of silica monoliths using a kinetic plot analysis of experimental and computational plate height data. J. Sep. Sci. 2006;29:1675-1685. https://doi.org/10.1002/jssc.200600180
Causon TJ, Broeckhoven K, Hilder EF, Shellie R A, Desmet G, Eeltink S. Kinetic performance optimisation for liquid chromatography: Principles and practice. J Sep Sci. 2011;34:877-887. https://doi.org/10.1002/jssc.201000904
Broeckhoven K, Desmet G. Methods to determine the kinetic performance limit of contemporary chromatographic techniques. J Sep Sci. 2021;4:323-339. https://doi.org/10.1002/jssc.202000779
Broeckhoven K, Cabooter D, Lynen F, Sandra P, Desmet G. The kinetic plot method applied to gradient chromatography: theoretical framework and experimental validation. J Chromatogr A. 2010;1217:2787-2795. https://doi.org/10.1016/j.chroma.2010.02.023
Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A. 2017;1498:8-21. https://doi.org/10.1016/j.chroma.2017.01.002
Vaast A, Tyteca E, Desmet G, Schoenmakers PJ, Eeltink S. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. J Chromatogr A. 2014;1355:149-157. https://doi.org/10.1016/j.chroma.2014.06.010