Non-Traditional Starches, Their Properties, and Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
C1_VSCHT_2023_049
University of Chemistry and Technology Prague
PubMed
37893687
PubMed Central
PMC10606120
DOI
10.3390/foods12203794
PII: foods12203794
Knihovny.cz E-zdroje
- Klíčová slova
- amylose–lipid complexes, edible films, granule size, nanomaterials, resistant starch, starch analyses, temperature of gelatinization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review paper focuses on the recent advancements in the large-scale and laboratory-scale isolation, modification, and characterization of novel starches from accessible botanical sources and food wastes. When creating a new starch product, one should consider the different physicochemical changes that may occur. These changes include the course of gelatinization, the formation of starch-lipids and starch-protein complexes, and the origin of resistant starch (RS). This paper informs about the properties of individual starches, including their chemical structure, the size and crystallinity of starch granules, their thermal and pasting properties, their swelling power, and their digestibility; in particular, small starch granules showed unique properties. They can be utilized as fat substitutes in frozen desserts or mayonnaises, in custard due to their smooth texture, in non-food applications in biodegradable plastics, or as adsorbents. The low onset temperature of gelatinization (detected by DSC in acorn starch) is associated with the costs of the industrial processes in terms of energy and time. Starch plays a crucial role in the food industry as a thickening agent. Starches obtained from ulluco, winter squash, bean, pumpkin, quinoa, and sweet potato demonstrate a high peak viscosity (PV), while waxy rice and ginger starches have a low PV. The other analytical methods in the paper include laser diffraction, X-ray diffraction, FTIR, Raman, and NMR spectroscopies. Native, "clean-label" starches from new sources could replace chemically modified starches due to their properties being similar to common commercially modified ones. Human populations, especially in developed countries, suffer from obesity and civilization diseases, a reduction in which would be possible with the help of low-digestible starches. Starch with a high RS content was discovered in gelatinized lily (>50%) and unripe plantains (>25%), while cooked lily starch retained low levels of rapidly digestible starch (20%). Starch from gorgon nut processed at high temperatures has a high proportion of slowly digestible starch. Therefore, one can include these types of starches in a nutritious diet. Interesting industrial materials based on non-traditional starches include biodegradable composites, edible films, and nanomaterials.
Zobrazit více v PubMed
BeMiller J., Whistler R., editors. Starch: Chemistry and Technology. 3rd ed. Academic Press; Boston, MA, USA: Elsevier; Amsterdam, The Netherlands: 2009. pp. 193–628.
Tanjung D.A., Jamarun N., Arief S., Aziz H., Isfa A.H.R.B. Influence of LLDPE-g-MA on mechanical properties, degradation performance, and water absorption of thermoplastic sago starch blends. Indones. J. Chem. 2022;22:171–178. doi: 10.22146/ijc.68558. DOI
Abdillah A.A., Charles A.L. Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int. J. Biol. Macromol. 2021;191:618–626. doi: 10.1016/j.ijbiomac.2021.09.141. PubMed DOI
Perez E., Lares M. Chemical composition, mineral profile, and functional properties of canna (Canna edulis) and arrowroot (Maranta spp.) starches. Plant Foods Hum. Nutr. 2005;60:113–116. doi: 10.1007/s11130-005-6838-9. PubMed DOI
Zhang J., Zhang M., Zhang Y., Bai X., Wang C. Effects of high hydrostatic pressure on the structure and retrogradation inhibition of oat starch. Int. J. Food Sci. Technol. 2022;57:2113–2125. doi: 10.1111/ijfs.15642. DOI
Chen Y., Liu Y.u, Liu H., Gao Y. Stabilizing emulsions using high-amylose maize starch treated by solvothermal process. Carbohydr. Polym. 2022;284:119190. doi: 10.1016/j.carbpol.2022.119190. PubMed DOI
Yue Y., Ren B., Zhong K., Wu Y., Bu Q., Gao H. Effects of konjac glucomannan on pasting, rheological, and structural properties of low-amylose rice starch. Int. J. Food Eng. 2022;18:291–301. doi: 10.1515/ijfe-2021-0074. DOI
Zhang C., Wang Z.-J., Liu Q.-Q., Qian J.-Y., Lim S.-T. Improvement of pasting and gelling behaviors of waxy maize starch by partial gelatinization and freeze-thawing treatment with xanthan gum. Food Chem. 2022;375:131656. PubMed
Mendez-Montealvo G., Velazquez G., Fonseca-Florido H.A., Morales-Sanchez E., Soler A. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. LWT Food Sci. Technol. 2022;153:112509. doi: 10.1016/j.lwt.2021.112509. DOI
Xu J., Yang H., Zhang C., Liu C. Optimised preparation and characterisation of lotus root starch oxidised with sodium hypochlorite (NaOCl) using response surface methodology. Czech J. Food Sci. 2022;40:61–68. doi: 10.17221/22/2021-CJFS. DOI
Min C., Ma W., Kuang J., Huang J., Xiong Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022;126:107482. doi: 10.1016/j.foodhyd.2022.107482. DOI
Almeida R.L.J., Dos Santos Pereira T., De Andrade Freire V., Santiago A.M., Oliveira H.M.L., De Sousa Conrado L., De Gusmao R.P. Influence of enzymatic hydrolysis on the properties of red rice starch. Int. J. Biol. Macromol. 2019;141:1210–1219. doi: 10.1016/j.ijbiomac.2019.09.072. PubMed DOI
Gao S.S., Liu H., Sun L.J., Cao J.W., Yang J.C., Lu M., Wang M. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocoll. 2021;110:106209.
Vanier N.L., da Rosa Zavareze E., Pinto V.Z., Klein B., Botelho F.T., Dias A.R.G., Cardoso Elias M. Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chem. 2012;131:1255–1262. doi: 10.1016/j.foodchem.2011.09.114. DOI
Šárka E., Caltová K., Smrčková P., Bleha R., Marek I., Fíla V., Lhotka M. Ekologické aspekty a aplikace škrobu. Chem. Listy. 2023;117:196–207. doi: 10.54779/chl20230196. DOI
Devi M.B., Deka S.C. Physicochemical properties and structure of starches of foxnut (Euryale ferox Salisb.) from India and its application. J. Food Process Preserv. 2022;46:e16262. doi: 10.1111/jfpp.16262. DOI
Puncha-arnon S., Puttanlek C., Rungsardthong V., Pathipanawat W., Uttapap D. Changes in physicochemical properties and morphology of canna starches during rhizomal development. Carbohydr. Polym. 2007;70:206–217. doi: 10.1016/j.carbpol.2007.03.020. DOI
Guo K., Liu T., Xu A., Zhang L., Bian X., Wei C. Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocoll. 2019;89:829–836. doi: 10.1016/j.foodhyd.2018.11.058. PubMed DOI
Zarroug Y., Boulares M., Sfayhi D., Slimi B., Stiti B., Zaieni K., Nefissi S., Kharrat M. Structural and physicochemical properties of Tunisian Quercus suber L. starches for custard formulation: A comparative study. Polymers. 2022;14:556. doi: 10.3390/polym14030556. PubMed DOI PMC
Guo C., Han F., Geng S., Shi Y., Ma H., Liu B. The physicochemical properties and Pickering emulsifying capacity of acorn starch. Int. J. Biol. Macromol. 2023;239:124289. doi: 10.1016/j.ijbiomac.2023.124289. PubMed DOI
Yao T., Wen Y., Xu Z., Ma M., Li P., Brennan C., Sui Z., Corke H. Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches. Int. J. Biol. Macromol. 2020;144:705–714. doi: 10.1016/j.ijbiomac.2019.12.129. PubMed DOI
Yadav P., Bharathi U., Suruthi K., Bosco S.J.D. Effect of ultrasonic modification on physiochemical, structural, functional properties and in vitro starch digestibility of Amaranthus paniculatus (Rajgeera) starch. Biomass Convers. Biomass Conv. Bioref. 2023 doi: 10.1007/s13399-023-04134-8. DOI
Beyan S.M., Amibo T.A., Sundramurthy V.P. Development of anchote (Coccinia abyssinica) starch-based edible film: Response surface modeling and interactive analysis of composition for water vapor permeability. J. Food Meas. Charact. 2022;16:2259–2272. doi: 10.1007/s11694-022-01338-w. DOI
Bikila A.M., Tola Y.B., Esho T.B., Forsido S.F., Mijena D.F. Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.) Cogn.) tuber flours dried at different temperatures. Food Sci. Nutr. 2022;10:645–660. doi: 10.1002/fsn3.2687. PubMed DOI PMC
Cortés-Viguri V., Hernández-Rodríguez L., Lobato-Calleros C., Cuevas-Bernardino J.C., Hernández-Rodríguez B.E., Alvarez-Ramirez J., Vernon-Carter E.J. Annatto (Bixa orellana L.), a potential novel starch source: Antioxidant, microstructural, functional, and digestibility properties. J. Food Meas. Charact. 2022;16:637–651. doi: 10.1007/s11694-021-01228-7. DOI
Liu Q., Zhou Y., Fettke J. Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development. Molecules. 2021;26:5859. doi: 10.3390/molecules26195859. PubMed DOI PMC
Ma M., Wen Y., Zhang C., Xu Z., Li H., Sui Z., Corke H. Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocoll. 2022;126:107370. doi: 10.1016/j.foodhyd.2021.107370. DOI
Baeza P., Pasten B., Concha J., Ojeda J. Removal of thiophene and 4,6-dimethyldibenzothiophene by adsorption on different kinds of starches. Water Air Soil Pollut. 2021;232:395. doi: 10.1007/s11270-021-05353-3. DOI
de Souza Oliveira E., Lovera M., Pires V.R., da Silva Mendes F.R., Peixoto Maia N.V.L., Rodrigues J.P.V., do Socorro Rocha Bastos M., Cheng H.N., Biswas A., de Azevedoreira R., et al. Effect of acid catalyst on pyroconversion of breadfruit (Artocarpus altilis) starch: Physicochemical and structural properties. J. Food Process. Preserv. 2022;46:e16408. doi: 10.1111/jfpp.16408. DOI
Marenco-Orozco G.A., Rosa M.F., Fernandes F.A.N. Effects of multiple-step cold plasma processing on banana (Musa sapientum) starch-based films. Packag. Technol. Sci. 2022;35:589–601. doi: 10.1002/pts.2636. DOI
Chen X., Ma M., Li X., Xu Z., Zhang C., Sui Z., Corke H. Microwave treatment alters the fine molecular structure of waxy hull-less barley starch. Int. J. Biol. Macromol. Part B. 2021;193:1086–1092. doi: 10.1016/j.ijbiomac.2021.11.007. PubMed DOI
Chinma C.E., Abu J.O., Afolabi F.H., Nwankwo P., Adebo J.A., Oyeyinka S.A., Njobeh P.B., Adebo O.A. Structure, in vitro starch digestibility and physicochemical properties of starch isolated from germinated Bambara groundnut. J. Food Sci. Technol. 2023;60:190–199. doi: 10.1007/s13197-022-05604-z. PubMed DOI PMC
Narayanamoorthy S., Zhang C., Xu Z., Ma M., Sui Z., Li K., Corke H. Genetic diversity and inter-relationships of common bean (Phaseolus vulgaris L.) starch traits. Starch–Stärke. 2022;74:2100189. doi: 10.1002/star.202100189. DOI
Hu J., Li X., Cheng Z., Fan X., Ma Z., Hu X., Wu G., Xing Y. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocoll. 2022;125:107365. doi: 10.1016/j.foodhyd.2021.107365. DOI
Vázquez-León L.A., Aparicio-Saguilán A., Martínez-Medinilla R.M., Utrilla-Coello R.G., Torruco-Uco J.G., Carpintero-Tepole V., Páramo-Calderón D.E. Physicochemical and morphological characterization of black bean (Phaseolus vulgaris L.) starch and potential application in nano-encapsulation by spray drying. J. Food Meas. Charact. 2022;16:547–560. doi: 10.1007/s11694-021-01181-5. DOI
He R., Pan Y.-G., Shang W.-T., Zong G., Huang W.-Y., Xiang D., Pan F., Zhang W.-M. Ultrasonic-assisted binding of canistel (Lucuma nervosa A.DC) seed starch with quercetin. Ultrason. Sonochem. 2023;96:106417. doi: 10.1016/j.ultsonch.2023.106417. PubMed DOI PMC
Gomes Basso Los F., Chezini A., Sztoltz Piroski C., Lacerda L.G., Nogueira A., Mottin Demiate I. Evaluation of physicochemical properties of starch from Brazilian Carioca beans (Phaseolus vulgaris) Starch-Stärke. 2022;74:2000281.
Su C., Zhang X., Ge X., Shen H., Zhang Q., Lu Y., Sun X., Sun Z., Li W. Structural, physical and degradation characteristics of polyvinyl alcohol/esterified mung bean starch/gliadin ternary composite plastic. Ind. Crops Prod. 2022;176:114365. doi: 10.1016/j.indcrop.2021.114365. DOI
Shahrim N.A., Sarifuddin N., Azhar A.Z.A., Zaki H.H.M. Biodegradation of mango seed starch films in soil. IIUM Eng. J. 2022;23:1.
Shen H., Guo Y., Zhao J., Zhao J., Ge X., Zhang Q., Yan W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int. J. Biol. Macromol. 2021;191:821–831. doi: 10.1016/j.ijbiomac.2021.09.157. PubMed DOI
Liu Z., Fu Y., Zhang J., Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem. 2021;98:1203–1214. doi: 10.1002/cche.10472. DOI
Jan R., Saxena D.C., Singh S. Physico-chemical and textural property of starch isolated from Chenopodium (Chenopodium album) grains. Cogent Food Agric. 2015;1:1095052. doi: 10.1080/23311932.2015.1095052. DOI
Guo Z., Li X., Yang D., Lei A., Zhang F. Structural and functional properties of chestnut starch based on high-pressure homogenization. LWT Food Sci. Technol. 2022;154:112647. doi: 10.1016/j.lwt.2021.112647. DOI
Liu C., Wang S.J., Chang X.D., Wang S. Structural and functional properties of starches from Chinese chestnuts. Food Hydrocoll. 2015;43:568–576. doi: 10.1016/j.foodhyd.2014.07.014. DOI
Zehra K., Nawab A., Alam F., Hadi A., Raza M. Development of novel biodegradable water chestnut starch/PVA composite film. Evaluation of plasticizer effect over physical, barrier, and mechanical properties. J. Food Process Preserv. 2022;46:e16334. doi: 10.1111/jfpp.16334. DOI
Ch C., He Y., Xiao X., Chen B., Zhou Y., Tan X., Ji Z., Zhang Y., Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int. J. Biol. Macromol. 2023;225:557–564. doi: 10.1016/j.ijbiomac.2022.11.111. PubMed DOI
Adewale Oderinde A., Ibikunle A.A., Bakre L.G., Babarinde N.A. Effects of acetylation, acid-thinning and oxidation on Chrysophyllum albidum (African Star Apple) kernel native starch. Chem. Papers. 2023;77:5385–5394. doi: 10.1007/s11696-023-02870-9. DOI
Yang Y., Chen Y., Jin Y., Liu J., Qin X., Liu W., Guo L. Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. Food Biosci. 2022;46:101521. doi: 10.1016/j.fbio.2021.101521. DOI
Singh R., Sharanagat V.S. Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch. Int. J. Biol. Macromol. 2020;164:1061–1069. doi: 10.1016/j.ijbiomac.2020.07.185. PubMed DOI
Zhang L., Chen Y., Zeng J., Zang J., Liang Q., Tang D., Wang Z., Yin Z. Digestive and physicochemical properties of small granular starch from Euryale ferox seeds growing in Yugan of China. Food Biophys. 2022;17:126–135. doi: 10.1007/s11483-021-09706-7. DOI
Ni’mah Y.L., Suprapto S., Harmami, Ulfin I., Fauziyah P.A. The fabrication of water-soluble chitosan capsule shell modified by alginate and gembili starch (Dioscorea esculenta L.) J. Renew. Mater. 2022;10:2365–2376. doi: 10.32604/jrm.2022.020001. DOI
Wang Y.-C., Liang Y.-C., Huang F.-L., Chang W.-C. Effect of freeze–thaw cycles on physicochemical and functional properties of ginger starch. Processes. 2023;11:1828. doi: 10.3390/pr11061828. DOI
Zeng J.-C., Xiao P.-J., Ling L.-J., Zhang L., Tang D.-B., Zhang Q.-F., Chen J.-G., Li J.-E., Yin Z.-P. Processing, digestion property and structure characterization of slowly digestible gorgon nut starch. Food Sci. Biotechnol. 2022;31:49–59. doi: 10.1007/s10068-021-01007-6. PubMed DOI PMC
Tung N.T., Thuy L.T.H., Luong N.T., Khoi N.V., Ha P.T.T., Thang N.H. The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition. J. Indian Chem. Soc. 2021;98:100192. doi: 10.1016/j.jics.2021.100192. DOI
Kushwaha R., Kaur S., Kaur D. Potential of jackfruit (Artocarpus Heterophyllus Lam.) seed starch as an alternative to the commercial starch source–A review. Food Rev. Int. 2023;39:2635–2654. doi: 10.1080/87559129.2021.1963979. DOI
Xu H., Fu X., Ding Z., Kong H., Ding S. Effect of ozone and high-pressure homogenization on the physicochemical, functional, and in vitro digestibility properties of lily starch. J. Food Process Preserv. 2021;45:e16076. doi: 10.1111/jfpp.16076. DOI
Zhang Y., Zeng H., Wang Y., Zeng S., Zheng B. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chem. 2014;155:311–318. doi: 10.1016/j.foodchem.2014.01.036. PubMed DOI
Rather J.A., Makroo H.A., Showkat Q.A., Majid D., Dar B.N. Recovery of gelatin from poultry waste: Characteristics of the gelatin and lotus starch-based coating material and its application in shelf-life enhancement of fresh cherry tomato. Food Packag. Shelf Life. 2022;31:100775. doi: 10.1016/j.fpsl.2021.100775. DOI
Lagunes-Delgado C., Agama-Acevedo E., Patino-Rodríguez O., Martinez M.M., Bello-Pérez L.A. Recovery of mango starch from unripe mango juice. LWT-Food Sci. Technol. 2022;153:112514. doi: 10.1016/j.lwt.2021.112514. DOI
Nayak P., Rayaguru K., Brahma S., Routray W., Dash S.K. Standardization of process protocol for isolation of starch from mango kernel and its characterization. J. Sci. Food Agric. 2021;102:2813–2825. doi: 10.1002/jsfa.11622. PubMed DOI
Mahajan P., Bera M.B., Panesar P.S. Structural, functional, textural characterization and in vitro digestibility of underutilized Kutki millet (Panicum sumatrense) starch. LWT-Food Sci. Technol. 2022;154:112831. doi: 10.1016/j.lwt.2021.112831. DOI
Bangar S.P., Sandhu K.S., Rusu A.V., Kaur P., Purewal S.S., Kaur M., Kaur N., Trif M. Proso-millet-starch-based edible films: An innovative approach for food industries. Coatings. 2021;11:1167. doi: 10.3390/coatings11101167. DOI
Li Y., Qi Y., Li H., Chen Z., Xu B. Improving the cold water swelling properties of oat starch by subcritical ethanol-water treatment. Int. J. Biol. Macromol. 2022;194:594–601. doi: 10.1016/j.ijbiomac.2021.11.102. PubMed DOI
Biswal A.K., Mishra S., Bhavy M.B., Samal A.K., Merugu R., Singh M.K., Misra P.K. Identifcation of starch with assorted shapes derived from the fleshy root tuber of Phoenix sylvestris: Extraction, morphological and techno-functional characterization. J. Food Meas. Charact. 2022;16:1688–1701. doi: 10.1007/s11694-021-01261-6. DOI
Chavez-Salazar A., Alvarez-Barreto C.I., Hoyos-Leyva J.D., Bello-Pérez L.A., Castellanos-Galeano F.J. Drying processes of OSA-modified plantain starch trigger changes in its functional properties and digestibility. LWT-Food Sci. Technol. 2022;154:112846. doi: 10.1016/j.lwt.2021.112846. DOI
Yuan T., Ye F., Chen T., Li M., Zhao G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.) Food Hydrocoll. 2022;122:107115. doi: 10.1016/j.foodhyd.2021.107115. DOI
Li G., Wang S., Zhu F. Physicochemical properties of quinoa starch. Carbohydr. Polym. 2016;137:328–338. doi: 10.1016/j.carbpol.2015.10.064. PubMed DOI
Pech-Cohuo S.C., Hernandez-Colula J., Gonzalez-Canche N.G., Salgado-Transito I., Uribe-Calderon J., Cervantes-Uc J.M., Cuevas-Bernardino J.C., Ayora -Talavera T., Pacheco N. Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Adv. 2021;6:875–880. doi: 10.1557/s43580-021-00134-w. DOI
Noor M.H.M., Ngadi N., Suhaidi A.N., Inuwa I.M., Opotu L.A. Response surface optimization of ultrasound-assisted extraction of sago starch from sago pith waste. Starch-Stärke. 2022;74:2100012. doi: 10.1002/star.202100012. DOI
Sudheesh C., Sunooj K.V., George J., Kumar S., Sajeevkumar V.A. Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India. J. Food Meas. Charact. 2019;13:1030. doi: 10.1007/s11694-018-0016-x. DOI
Han L., Qiu S., Cao S., Yu Y., Yu S., Liu Y. Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds. Carbohydr. Polym. 2021;273:118583. doi: 10.1016/j.carbpol.2021.118583. PubMed DOI
Mondal D., Kantamraju P., Jha S., Sundarrao G.S., Bhowmik A., Chakdar H., Mandal S., Sahana N., Roy B., Madhab Bhattacharya P., et al. Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Sci. Rep. 2021;11:4786. doi: 10.1038/s41598-021-83921-7. PubMed DOI PMC
Gani A., Ashwar B.A., Akhter G., Gani A., Shah A., Masoodi F.A., Wani A. Resistant starch from five Himalayan rice cultivars and Horse chestnut: Extraction method optimization and characterization. Sci. Rep. 2020;10:4097. doi: 10.1038/s41598-020-60770-4. PubMed DOI PMC
Wu C., Ji G., Gao F., Qian J.-Y., Zhang L., Li Q., Zhang C. Effect of heat-moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch. Food Sci. Nutr. 2021;9:6720–6727. doi: 10.1002/fsn3.2622. PubMed DOI PMC
Navaf M., Sunooj K.V., Krishna N.U., Aaliya B., Sudheesh C., Akhila P.P., Sabu S., Sasidharan A., Mir S.A., George J. Effect of different hydrothermal treatments on pasting, textural, and rheological properties of single and dual modified Corypha Umbraculifera L. starch. Starch-Stärke. 2022;74:2100236. doi: 10.1002/star.202100236. DOI
Akinyosoye T.S., Nwokocha L.M. Morphological, structural, and paste characteristics of native and heat-moisture treated Treculia africana starch. Starch-Stärke. 2022;74:2100196. doi: 10.1002/star.202100196. DOI
Galindez A., Daz L.D., Homez-Jara A., Eim V.S., Váquiro H.A. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr. Polym. 2019;215:143–150. doi: 10.1016/j.carbpol.2019.03.074. PubMed DOI
Chiotelli E., Le Meste M. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem. 2002;79:286–293. doi: 10.1094/CCHEM.2002.79.2.286. DOI
Lindeboom N., Chang P.R., Tyler R.T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch-Starke. 2004;56:89–99. doi: 10.1002/star.200300218. DOI
Ma M., Zhu H., Liu Z., Sui Z., Corke H. Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocoll. Part B. 2022;124:107318. doi: 10.1016/j.foodhyd.2021.107318. DOI
He W., Wei C. Progress in C-type starches from different plant sources. Food Hydrocoll. 2017;73:162–175. doi: 10.1016/j.foodhyd.2017.07.003. DOI
Cardoso G.J., Kipp S.D.M., Garcia V.A.S., Carvalho R.A., Vanin F.M. Arrowroot starch (Maranta arundinacea) as a bread ingredient for product development. J. Food Process Preserv. 2022;46:e16251. doi: 10.1111/jfpp.16251. DOI
Esquivel-Fajardo E.A., Martinez-Ascencio E.U., Oseguera-Toledo M.E., Londono-Restrepo S.M., Rodriguez-García M.E. Influence of physicochemical changes of the avocado starch throughout its pasting profile: Combined extraction. Carbohydr. Polym. 2022;281:119048. doi: 10.1016/j.carbpol.2021.119048. PubMed DOI
Zhou R., Wang Y., Wang Z., Liu K., Wang Q., Bao H. Effects of Auricularia auricula-judae polysaccharide on pasting, gelatinization, rheology, structural properties and in vitro digestibility of kidney bean starch. Int. J. Biol. Macromol. 2021;191:1105–1113. doi: 10.1016/j.ijbiomac.2021.09.110. PubMed DOI
Wang N., Dong Y., Dai Y., Zhang H., Hou H., Wang W., Ding X., Zhang H., Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res. Int. 2023;165:112532. doi: 10.1016/j.foodres.2023.112532. PubMed DOI
Jacinto Almeida R.L., Santos N.C., da Silva G.M., Fonseca Feitoza J.V., de Alcântara Silva V.M., de Alcântara Ribeiro V.H., da Silva Eduardo R., de Sousa Muniz C.E. Effects of hydrothermal pretreatments on thermodynamic and technological properties of red bean starch. J. Food Process. Eng. 2022;45:e13994. doi: 10.1111/jfpe.13994. DOI
Liu W., Zhang Y., Wang R., Li J., Pan W., Zhang X., Xiao W., Wen H., Xie J. Chestnut starch modification with dry heat treatment and addition of xanthan gum: Gelatinization, structural and functional properties. Food Hydrocoll. 2022;124:107205. doi: 10.1016/j.foodhyd.2021.107205. DOI
Liu C., Yan H., Liu S., Chang X. Influence of phosphorylation and acetylation on structural, physicochemical and functional properties of chestnut starch. Polymers. 2022;14:172. doi: 10.3390/polym14010172. PubMed DOI PMC
Lin Y., Liu L., Li L., Xu Y., Zhang Y., Zeng H. Properties and digestibility of a novel porous starch from lotus seed prepared via synergistic enzymatic treatment. Int. J. Biol. Macromol. 2022;194:144–152. doi: 10.1016/j.ijbiomac.2021.11.196. PubMed DOI
Shi L., Li Y., Lin L., Bian X., Wei C. Effects of variety and growing location on physicochemical properties of starch from sweet potato root tuber. Molecules. 2021;26:7137. doi: 10.3390/molecules26237137. PubMed DOI PMC
Parra D.O., Daza Ramírez L.D., Sandoval-Aldana A., Eim V.S., Váquiro H.A. Annealing treatment of ulluco starch: Effect of moisture content and time on the physicochemical properties. J. Food Process. Preserv. 2022;46:e16353. doi: 10.1111/jfpp.16353. DOI
Parra D.O., Eim V.S., Váquiro H.A. Influence of ulluco starch concentration on the physicochemical properties of starch–chitosan biocomposite films. Polymers. 2021;13:4232. PubMed PMC
Hanashiro I., Abe J., Huzukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 1996;283:151–159. doi: 10.1016/0008-6215(95)00408-4. DOI
Tang H.J., Ando H., Watanabe K., Takeda Y., Mitsunaga T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydr. Res. 2001;330:241–248. doi: 10.1016/S0008-6215(00)00292-5. PubMed DOI
Jane J., Chen Y.Y., Lee L.F., McPherson A.E., Wong K.S., Radosavljevic M., Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;78:629–637. doi: 10.1094/CCHEM.1999.76.5.629. DOI
Annor G.A., Marcone M., Bertoft E., Seetharaman K. Unit and internal chain profile of millet amylopectin. Cereal Chem. 2014;91:29–34. doi: 10.1094/CCHEM-08-13-0156-R. DOI
Ratnayake W.S., Hoover R., Shahidi F., Perera C., Jane J. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 2001;74:189–202. doi: 10.1016/S0308-8146(01)00124-8. DOI
de Dios-Avila N., Tirado-Gallegos J.M., Rios-Velasco C., Luna-Esquivel G., Isiordia-Aquino N., Zamudio-Flores P.B., Estrada-Virgen M.O., Cambero-Campos O.J. Physicochemical, structural, thermal and rheological properties of flour and starch isolated from avocado seeds of Landrace and Hass cultivars. Molecules. 2022;27:910. doi: 10.3390/molecules27030910. PubMed DOI PMC
Li G., Zhu F. Physicochemical, rheological, and emulsification properties of nonenyl succinic anhydride (NSA) modified quinoa starch. Int. J. Biol. Macromol. 2021;193:1371–1378. doi: 10.1016/j.ijbiomac.2021.10.199. PubMed DOI
Hongsprabhas P., Israkarn K., Rattanawattanaprakit C. Architectural changes of heated mungbean, rice and cassava starch granules: Effects of hydrocolloids and protein-containing envelope. Carbohydr. Polym. 2007;67:614–622. doi: 10.1016/j.carbpol.2006.07.012. DOI
Hussain S., Mohamed A.A., Alamri M.S., Ibraheem M.A., Qasem A.A.A., Alsulami T., Ababtain I.A. Effect of cactus (Opuntia ficus-indica) and acacia (Acacia seyal) gums on the pasting, thermal, textural, and rheological properties of corn, sweet potato, and Turkish bean starches. Molecules. 2022;27:701. doi: 10.3390/molecules27030701. PubMed DOI PMC
Crosbie G.B., Ross A.S., editors. The RVA Handbook. 5th ed. AACC International; St. Paul, MN, USA: 2015. pp. 138–140.
Asmeda R., Noorlaila A., Norziah M.H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour. Food Chem. 2016;191:45–51. doi: 10.1016/j.foodchem.2015.05.095. PubMed DOI
Sit N., Misra S., Deka S.C. Physicochemical, functional, textural and colour characteristics of starches isolated from four taro cultivars of North-East India. Starch-Stärke. 2013;65:1011–1021. doi: 10.1002/star.201300033. DOI
Vengaiah P.C., Murthy G.N., Prasad K.R., Kumari K.U., Raj S.A. Physico-chemical and functional characteristics of palmyrah (Borassus flabellifer L.) spongy haustorium flour. J. Plantation Crops. 2013;41:437–440.
Mehfooz T., Ali T.M., Ahsan M., Abdullah S., Hasnain A. Use of hydroxypropylated barley starch as partial casein replacer in imitation mozzarella cheese. J. Food Process Preserv. 2021;45:e16094. doi: 10.1111/jfpp.16094. DOI
Photinam R., Moongngarm A., Paseephol T. Process optimization to increase resistant starch in vermicelli prepared from mung bean and cowpea starch. Emir. J. Food Agric. 2016;28:449–458.
Rodboontheng W., Uttapap D., Wandee Y., Udchumpisa W., Kotatha D., Puttanlek C., Rungsardthong V. Simple thermal and freezing treatments to improve absorption capacity and alter digestibility of canna starch granules. Int. J. Biol. Macromol. 2022;194:861–869. doi: 10.1016/j.ijbiomac.2021.11.141. PubMed DOI
Mohamed H.I., Fawzi E.M., Basit A., Kaleemullah, Lone R., Sofy M.R. Sorghum: Nutritional factors, bioactive compounds, pharmaceutical and application in food systems: A review. Phyton. 2022;91:1303–1325. doi: 10.32604/phyton.2022.020642. DOI
Šárka E., Sluková M., Henke S. Changes of phenolics during cooking extrusion: A review. Foods. 2021;10:2100. doi: 10.3390/foods10092100. PubMed DOI PMC
Escobar-Puentes A.A., Reyes-Lopez S.Y., de Jesús Ruíz Baltazar A., Lopez-Teros V., Wall-Medrano A. Molecular interaction of β-carotene with sweet potato starch: A bleaching-restitution assay. Food Hydrocoll. 2022;127:107522. doi: 10.1016/j.foodhyd.2022.107522. DOI
Kulp K. Characteristics of small-granule starch of flour and wheat. Cereal Chem. 1973;50:666–679.
Englyst H.N., Anderson V., Cummings J.H. Starch and non-starch polysaccharides in some cereal foods. J. Sci. Food Agric. 1983;34:1434–1440. doi: 10.1002/jsfa.2740341219. PubMed DOI
Wu X., Yu H., Bao G., Luan M., Wang C. Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism. J. Food Meas. Charact. 2022;16:945–956. doi: 10.1007/s11694-021-01222-z. DOI
Warren F.J., Gidley M.J., Flanagan B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016;139:35–42. doi: 10.1016/j.carbpol.2015.11.066. PubMed DOI
Pelissari F.M., Andrade-Mahecha M.M., Sobral P.J.d.A., Menegalli F.C. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca) Starch-Stärke. 2012;64:382–391. doi: 10.1002/star.201100133. DOI
Kizil R., Irudayaraj J., Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002;50:3912–3918. doi: 10.1021/jf011652p. PubMed DOI
Fan D., Ma W., Wang L., Huang J., Zhao J., Zhang H., Chen W. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch-Stärke. 2012;64:598–606. doi: 10.1002/star.201100200. DOI
Dankar I., Haddarah A., Omar F.E., Pujolà M., Sepulcre F. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 2018;260:7–12. doi: 10.1016/j.foodchem.2018.03.138. PubMed DOI
Olsson A.-M., Salmén L. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr. Res. 2004;339:813–818. doi: 10.1016/j.carres.2004.01.005. PubMed DOI
Liu K., Zhang B.J., Chen L., Li X.X., Zheng B. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chem. 2019;271:102–108. doi: 10.1016/j.foodchem.2018.07.193. PubMed DOI
Ren Y., Jiang L., Wang W., Xiao Y., Liu S., Luo Y., Shen M., Xie J. Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocoll. 2020;99:105371. doi: 10.1016/j.foodhyd.2019.105371. DOI
Xiao Y., Liu S., Shen M., Jiang L., Ren Y., Luo Y., Xie J. Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch-Mesona chinensis polysaccharides gels. Food Hydrocoll. 2020;99:105327. doi: 10.1016/j.foodhyd.2019.105327. DOI
Demiate I.M., Dupuy N., Huvenne J.P., Cereda M.P., Wosiacki G. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydr. Polym. 2000;42:149–158. doi: 10.1016/S0144-8617(99)00152-6. DOI
Fang J.M., Fowler P.A., Sayers C., Williams P.A. The chemical modification of a range of starches under aqueous reaction conditions. Carbohydr. Polym. 2004;55:283–289. doi: 10.1016/j.carbpol.2003.10.003. DOI
Hu X., Shi J., Zhang F., Zou X., Holmes M., Zhang W., Huang X., Cui X., Xue J. Determination of retrogradation degree in starch by Mid-infrared and Raman spectroscopy during storage. Food Anal. Methods. 2017;10:3694–3705. doi: 10.1007/s12161-017-0932-0. DOI
Flores-Morales A., Jiménez-Estrada M., Mora-Escobedo R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012;87:61–68. doi: 10.1016/j.carbpol.2011.07.011. PubMed DOI
Nobrega M.M., Olivato J.B., Müller C.M., Yamashita F. Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and Raman spectroscopic characterization. Polímeros. 2012;22:475–480. doi: 10.1590/S0104-14282012005000068. DOI
Bernardino-Nicanor A., Acosta-García G., Güemes-Vera N., Montañez-Soto J.L., de los Ángeles Vivar-Vera M., González-Cruz L. Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J. Food Sci. Technol. 2017;54:933–943. doi: 10.1007/s13197-016-2370-1. PubMed DOI PMC
Liu Y., Xu Y., Yan Y., Hu D., Yang L., Shen R. Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch-Stärke. 2015;67:612–619. doi: 10.1002/star.201400246. DOI
De Gussem K., Vandenabeele P., Verbeken A., Moens L. Raman spectroscopic study of Lactarius spores (Russulales, Fungi) Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005;61:2896–2908. doi: 10.1016/j.saa.2004.10.038. PubMed DOI
Vandenabeele P., Wehling B., Moens L., Edwards H., De Reu M., Van Hooydonk G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta. 2000;407:261–274. doi: 10.1016/S0003-2670(99)00827-2. DOI
Pigorsch E. Spectroscopic characterisation of cationic quaternary ammonium starches. Starch-Stärke. 2009;61:129–138. doi: 10.1002/star.200800090. DOI
Phillips D.L., Xing J., Chong C.K., Liu H., Corke H. Determination of the degree of succinylation in diverse modified starches by Raman spectroscopy. J. Agric. Food Chem. 2000;48:5105–5108. doi: 10.1021/jf9907790. PubMed DOI
Zhu F. NMR spectroscopy of starch systems. Food Hydrocoll. 2017;63:611–624. doi: 10.1016/j.foodhyd.2016.10.015. DOI
Abdul Hadi N., Wiege B., Stabenau S., Marefati A., Rayner M. Comparison of three methods to determine the degree of substitution of quinoa and rice starch acetates, propionates, and butyrates: Direct stoichiometry, FTIR, and 1H-NMR. Foods. 2020;9:83. doi: 10.3390/foods9010083. PubMed DOI PMC
Cuenca P., Ferrero S., Albani O. Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocoll. 2020;100:105430. doi: 10.1016/j.foodhyd.2019.105430. DOI
Elomaa M., Asplund T., Soininen P., Laatikainen R., Peltonen S., Hyvärinen S., Urtti A. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr. Polym. 2004;57:261–267. doi: 10.1016/j.carbpol.2004.05.003. DOI
Bai Y., Shi Y.C., Herrera A., Prakash O.M. Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydr. Polym. 2011;83:407–413. doi: 10.1016/j.carbpol.2010.07.053. DOI
Fan D., Ma W., Wang L., Huang J., Zhang F., Zhao J., Zhang H., Chen W. Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydr. Polym. 2013;92:1395–1401. doi: 10.1016/j.carbpol.2012.09.072. PubMed DOI
Lopez-Rubio A., Flanagan B.M., Gilbert E.P., Gidley M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers. 2008;89:761–768. doi: 10.1002/bip.21005. PubMed DOI
Tan I., Flanagan B.M., Halley P.J., Whittaker A.K., Gidley M.J. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules. 2007;81:885–891. doi: 10.1021/bm060988a. PubMed DOI
Riley I.M., Nivelle M.A., Ooms N., Delcour J.A. The use of time domain 1H NMR to study proton dynamics in starch-rich foods: A review. Compr. Rev. Food Sci. Food Saf. 2022;21:4738–4775. doi: 10.1111/1541-4337.13029. PubMed DOI
Biduski B., Amaral do Evangelho J., Oliveira Lima K., de Mello El Halal S.L., da Rosa Zavareze E., Guerra Dias A.R., Pinto V.Z. Heat–moisture treatment on pinhão starch impacts the properties of the biodegradable films. Starch-Stärke. 2023;75:2200209. doi: 10.1002/star.202200209. DOI
Zhu F. Underutilized and unconventional starches: Why should we care? Trends Food Sci. Technol. 2020;100:363–373. doi: 10.1016/j.tifs.2020.04.018. DOI
Du S.K., Jiang H., Ai Y., Jane J.L. Physicochemical and functional properties of whole legume flour. Carbohydr. Polym. 2014;108:308–313. doi: 10.1016/j.lwt.2013.06.001. PubMed DOI
Malinski E., Daniel J.R., Zhang X.X., Whistler R.L. Isolation of small starch granules and determination of their fat mimic characteristics. Cereal Chem. 2003;80:1–4. doi: 10.1094/CCHEM.2003.80.1.1. DOI
Šárka E., Bubník Z. Morfologie, chemická struktura, vlastnosti a možnost využití pšeničného B-škrobu. Chem. Listy. 2010;104:318–325.
Šárka E., Krulis Z., Kotek J., Ruzek L., Korbarova A., Bubnik Z., Ruzkova M. Application of wheat B-starch in biodegradable plastic materials. Czech J. Food Sci. 2011;29:232–242. doi: 10.17221/292/2010-CJFS. DOI
Nain V., Kaur M., Sandhu K.S., Thory R., Sinhmar A. Development of starch nanoparticle from mango kernel in comparison with cereal, tuber, and legume starch nanoparticles: Characterization and cytotoxicity. Starch-Stärke. 2022;74:2100252. doi: 10.1002/star.202100252. DOI
de Sousa Martinez de Freitas A., Bernardo da Silva A.P., Stieven Montagna L., Araujo Nogueira I., Kevin Carvalho N., Siqueira de Faria V., Bomfim dos Santos N., Lemes A.P. Thermoplastic starch nanocomposites: Sources, production and applications—A review. J. Biomater. Sci. Polymer Ed. 2022;33:900–945. doi: 10.1080/09205063.2021.2021351. PubMed DOI
Sahoo P.K., Rana P.K. Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsorbing composite. J. Mater. Sci. 2006;41:6470–6475. doi: 10.1007/s10853-006-0504-y. DOI
Šárka E., Kruliš Z., Kotek J., Růžek L., Koláček J., Hrušková K., Bubník Z. Biodegradabilní kompozitní materiály na bázi pšeničného B-škrobu s upotřebením v zemědělství. Listy Cukrovar. Řep. 2011;127:402–405.
Tarique J., Zainudin E.S., Sapuan S.M., Ilyas R.A., Khalina A. Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers. 2022;14:388. doi: 10.3390/polym14030388. PubMed DOI PMC
Wang X.L., Yang K.K., Wang Y.Y. Properties of starch blends with biodegradable biopolymers. J. Macromol. Sci. Part C. 2003;43:385–409. doi: 10.1081/MC-120023911. DOI
Kierulf A., Whaley J., Liu W.C., Enayati M., Tan C., Perez-Herrera M., You Z., Abbaspourrad A. Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering emulsifiers. Food Chem. 2020;315:126246. doi: 10.1016/j.foodchem.2020.126246. PubMed DOI
Pagno C.H., Costa T.M., de Menezes E.W., Benvenutti E.V., Hertz P.F., Matte C.R., Tosati J.V., Monteiro A.R., Rios A.O., Flores S.H. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 2015;173:755–762. doi: 10.1016/j.foodchem.2014.10.068. PubMed DOI