Non-Traditional Starches, Their Properties, and Applications

. 2023 Oct 16 ; 12 (20) : . [epub] 20231016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37893687

Grantová podpora
C1_VSCHT_2023_049 University of Chemistry and Technology Prague

This review paper focuses on the recent advancements in the large-scale and laboratory-scale isolation, modification, and characterization of novel starches from accessible botanical sources and food wastes. When creating a new starch product, one should consider the different physicochemical changes that may occur. These changes include the course of gelatinization, the formation of starch-lipids and starch-protein complexes, and the origin of resistant starch (RS). This paper informs about the properties of individual starches, including their chemical structure, the size and crystallinity of starch granules, their thermal and pasting properties, their swelling power, and their digestibility; in particular, small starch granules showed unique properties. They can be utilized as fat substitutes in frozen desserts or mayonnaises, in custard due to their smooth texture, in non-food applications in biodegradable plastics, or as adsorbents. The low onset temperature of gelatinization (detected by DSC in acorn starch) is associated with the costs of the industrial processes in terms of energy and time. Starch plays a crucial role in the food industry as a thickening agent. Starches obtained from ulluco, winter squash, bean, pumpkin, quinoa, and sweet potato demonstrate a high peak viscosity (PV), while waxy rice and ginger starches have a low PV. The other analytical methods in the paper include laser diffraction, X-ray diffraction, FTIR, Raman, and NMR spectroscopies. Native, "clean-label" starches from new sources could replace chemically modified starches due to their properties being similar to common commercially modified ones. Human populations, especially in developed countries, suffer from obesity and civilization diseases, a reduction in which would be possible with the help of low-digestible starches. Starch with a high RS content was discovered in gelatinized lily (>50%) and unripe plantains (>25%), while cooked lily starch retained low levels of rapidly digestible starch (20%). Starch from gorgon nut processed at high temperatures has a high proportion of slowly digestible starch. Therefore, one can include these types of starches in a nutritious diet. Interesting industrial materials based on non-traditional starches include biodegradable composites, edible films, and nanomaterials.

Zobrazit více v PubMed

BeMiller J., Whistler R., editors. Starch: Chemistry and Technology. 3rd ed. Academic Press; Boston, MA, USA: Elsevier; Amsterdam, The Netherlands: 2009. pp. 193–628.

Tanjung D.A., Jamarun N., Arief S., Aziz H., Isfa A.H.R.B. Influence of LLDPE-g-MA on mechanical properties, degradation performance, and water absorption of thermoplastic sago starch blends. Indones. J. Chem. 2022;22:171–178. doi: 10.22146/ijc.68558. DOI

Abdillah A.A., Charles A.L. Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int. J. Biol. Macromol. 2021;191:618–626. doi: 10.1016/j.ijbiomac.2021.09.141. PubMed DOI

Perez E., Lares M. Chemical composition, mineral profile, and functional properties of canna (Canna edulis) and arrowroot (Maranta spp.) starches. Plant Foods Hum. Nutr. 2005;60:113–116. doi: 10.1007/s11130-005-6838-9. PubMed DOI

Zhang J., Zhang M., Zhang Y., Bai X., Wang C. Effects of high hydrostatic pressure on the structure and retrogradation inhibition of oat starch. Int. J. Food Sci. Technol. 2022;57:2113–2125. doi: 10.1111/ijfs.15642. DOI

Chen Y., Liu Y.u, Liu H., Gao Y. Stabilizing emulsions using high-amylose maize starch treated by solvothermal process. Carbohydr. Polym. 2022;284:119190. doi: 10.1016/j.carbpol.2022.119190. PubMed DOI

Yue Y., Ren B., Zhong K., Wu Y., Bu Q., Gao H. Effects of konjac glucomannan on pasting, rheological, and structural properties of low-amylose rice starch. Int. J. Food Eng. 2022;18:291–301. doi: 10.1515/ijfe-2021-0074. DOI

Zhang C., Wang Z.-J., Liu Q.-Q., Qian J.-Y., Lim S.-T. Improvement of pasting and gelling behaviors of waxy maize starch by partial gelatinization and freeze-thawing treatment with xanthan gum. Food Chem. 2022;375:131656. PubMed

Mendez-Montealvo G., Velazquez G., Fonseca-Florido H.A., Morales-Sanchez E., Soler A. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. LWT Food Sci. Technol. 2022;153:112509. doi: 10.1016/j.lwt.2021.112509. DOI

Xu J., Yang H., Zhang C., Liu C. Optimised preparation and characterisation of lotus root starch oxidised with sodium hypochlorite (NaOCl) using response surface methodology. Czech J. Food Sci. 2022;40:61–68. doi: 10.17221/22/2021-CJFS. DOI

Min C., Ma W., Kuang J., Huang J., Xiong Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022;126:107482. doi: 10.1016/j.foodhyd.2022.107482. DOI

Almeida R.L.J., Dos Santos Pereira T., De Andrade Freire V., Santiago A.M., Oliveira H.M.L., De Sousa Conrado L., De Gusmao R.P. Influence of enzymatic hydrolysis on the properties of red rice starch. Int. J. Biol. Macromol. 2019;141:1210–1219. doi: 10.1016/j.ijbiomac.2019.09.072. PubMed DOI

Gao S.S., Liu H., Sun L.J., Cao J.W., Yang J.C., Lu M., Wang M. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocoll. 2021;110:106209.

Vanier N.L., da Rosa Zavareze E., Pinto V.Z., Klein B., Botelho F.T., Dias A.R.G., Cardoso Elias M. Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chem. 2012;131:1255–1262. doi: 10.1016/j.foodchem.2011.09.114. DOI

Šárka E., Caltová K., Smrčková P., Bleha R., Marek I., Fíla V., Lhotka M. Ekologické aspekty a aplikace škrobu. Chem. Listy. 2023;117:196–207. doi: 10.54779/chl20230196. DOI

Devi M.B., Deka S.C. Physicochemical properties and structure of starches of foxnut (Euryale ferox Salisb.) from India and its application. J. Food Process Preserv. 2022;46:e16262. doi: 10.1111/jfpp.16262. DOI

Puncha-arnon S., Puttanlek C., Rungsardthong V., Pathipanawat W., Uttapap D. Changes in physicochemical properties and morphology of canna starches during rhizomal development. Carbohydr. Polym. 2007;70:206–217. doi: 10.1016/j.carbpol.2007.03.020. DOI

Guo K., Liu T., Xu A., Zhang L., Bian X., Wei C. Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocoll. 2019;89:829–836. doi: 10.1016/j.foodhyd.2018.11.058. PubMed DOI

Zarroug Y., Boulares M., Sfayhi D., Slimi B., Stiti B., Zaieni K., Nefissi S., Kharrat M. Structural and physicochemical properties of Tunisian Quercus suber L. starches for custard formulation: A comparative study. Polymers. 2022;14:556. doi: 10.3390/polym14030556. PubMed DOI PMC

Guo C., Han F., Geng S., Shi Y., Ma H., Liu B. The physicochemical properties and Pickering emulsifying capacity of acorn starch. Int. J. Biol. Macromol. 2023;239:124289. doi: 10.1016/j.ijbiomac.2023.124289. PubMed DOI

Yao T., Wen Y., Xu Z., Ma M., Li P., Brennan C., Sui Z., Corke H. Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches. Int. J. Biol. Macromol. 2020;144:705–714. doi: 10.1016/j.ijbiomac.2019.12.129. PubMed DOI

Yadav P., Bharathi U., Suruthi K., Bosco S.J.D. Effect of ultrasonic modification on physiochemical, structural, functional properties and in vitro starch digestibility of Amaranthus paniculatus (Rajgeera) starch. Biomass Convers. Biomass Conv. Bioref. 2023 doi: 10.1007/s13399-023-04134-8. DOI

Beyan S.M., Amibo T.A., Sundramurthy V.P. Development of anchote (Coccinia abyssinica) starch-based edible film: Response surface modeling and interactive analysis of composition for water vapor permeability. J. Food Meas. Charact. 2022;16:2259–2272. doi: 10.1007/s11694-022-01338-w. DOI

Bikila A.M., Tola Y.B., Esho T.B., Forsido S.F., Mijena D.F. Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.) Cogn.) tuber flours dried at different temperatures. Food Sci. Nutr. 2022;10:645–660. doi: 10.1002/fsn3.2687. PubMed DOI PMC

Cortés-Viguri V., Hernández-Rodríguez L., Lobato-Calleros C., Cuevas-Bernardino J.C., Hernández-Rodríguez B.E., Alvarez-Ramirez J., Vernon-Carter E.J. Annatto (Bixa orellana L.), a potential novel starch source: Antioxidant, microstructural, functional, and digestibility properties. J. Food Meas. Charact. 2022;16:637–651. doi: 10.1007/s11694-021-01228-7. DOI

Liu Q., Zhou Y., Fettke J. Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development. Molecules. 2021;26:5859. doi: 10.3390/molecules26195859. PubMed DOI PMC

Ma M., Wen Y., Zhang C., Xu Z., Li H., Sui Z., Corke H. Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocoll. 2022;126:107370. doi: 10.1016/j.foodhyd.2021.107370. DOI

Baeza P., Pasten B., Concha J., Ojeda J. Removal of thiophene and 4,6-dimethyldibenzothiophene by adsorption on different kinds of starches. Water Air Soil Pollut. 2021;232:395. doi: 10.1007/s11270-021-05353-3. DOI

de Souza Oliveira E., Lovera M., Pires V.R., da Silva Mendes F.R., Peixoto Maia N.V.L., Rodrigues J.P.V., do Socorro Rocha Bastos M., Cheng H.N., Biswas A., de Azevedoreira R., et al. Effect of acid catalyst on pyroconversion of breadfruit (Artocarpus altilis) starch: Physicochemical and structural properties. J. Food Process. Preserv. 2022;46:e16408. doi: 10.1111/jfpp.16408. DOI

Marenco-Orozco G.A., Rosa M.F., Fernandes F.A.N. Effects of multiple-step cold plasma processing on banana (Musa sapientum) starch-based films. Packag. Technol. Sci. 2022;35:589–601. doi: 10.1002/pts.2636. DOI

Chen X., Ma M., Li X., Xu Z., Zhang C., Sui Z., Corke H. Microwave treatment alters the fine molecular structure of waxy hull-less barley starch. Int. J. Biol. Macromol. Part B. 2021;193:1086–1092. doi: 10.1016/j.ijbiomac.2021.11.007. PubMed DOI

Chinma C.E., Abu J.O., Afolabi F.H., Nwankwo P., Adebo J.A., Oyeyinka S.A., Njobeh P.B., Adebo O.A. Structure, in vitro starch digestibility and physicochemical properties of starch isolated from germinated Bambara groundnut. J. Food Sci. Technol. 2023;60:190–199. doi: 10.1007/s13197-022-05604-z. PubMed DOI PMC

Narayanamoorthy S., Zhang C., Xu Z., Ma M., Sui Z., Li K., Corke H. Genetic diversity and inter-relationships of common bean (Phaseolus vulgaris L.) starch traits. Starch–Stärke. 2022;74:2100189. doi: 10.1002/star.202100189. DOI

Hu J., Li X., Cheng Z., Fan X., Ma Z., Hu X., Wu G., Xing Y. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocoll. 2022;125:107365. doi: 10.1016/j.foodhyd.2021.107365. DOI

Vázquez-León L.A., Aparicio-Saguilán A., Martínez-Medinilla R.M., Utrilla-Coello R.G., Torruco-Uco J.G., Carpintero-Tepole V., Páramo-Calderón D.E. Physicochemical and morphological characterization of black bean (Phaseolus vulgaris L.) starch and potential application in nano-encapsulation by spray drying. J. Food Meas. Charact. 2022;16:547–560. doi: 10.1007/s11694-021-01181-5. DOI

He R., Pan Y.-G., Shang W.-T., Zong G., Huang W.-Y., Xiang D., Pan F., Zhang W.-M. Ultrasonic-assisted binding of canistel (Lucuma nervosa A.DC) seed starch with quercetin. Ultrason. Sonochem. 2023;96:106417. doi: 10.1016/j.ultsonch.2023.106417. PubMed DOI PMC

Gomes Basso Los F., Chezini A., Sztoltz Piroski C., Lacerda L.G., Nogueira A., Mottin Demiate I. Evaluation of physicochemical properties of starch from Brazilian Carioca beans (Phaseolus vulgaris) Starch-Stärke. 2022;74:2000281.

Su C., Zhang X., Ge X., Shen H., Zhang Q., Lu Y., Sun X., Sun Z., Li W. Structural, physical and degradation characteristics of polyvinyl alcohol/esterified mung bean starch/gliadin ternary composite plastic. Ind. Crops Prod. 2022;176:114365. doi: 10.1016/j.indcrop.2021.114365. DOI

Shahrim N.A., Sarifuddin N., Azhar A.Z.A., Zaki H.H.M. Biodegradation of mango seed starch films in soil. IIUM Eng. J. 2022;23:1.

Shen H., Guo Y., Zhao J., Zhao J., Ge X., Zhang Q., Yan W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int. J. Biol. Macromol. 2021;191:821–831. doi: 10.1016/j.ijbiomac.2021.09.157. PubMed DOI

Liu Z., Fu Y., Zhang J., Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem. 2021;98:1203–1214. doi: 10.1002/cche.10472. DOI

Jan R., Saxena D.C., Singh S. Physico-chemical and textural property of starch isolated from Chenopodium (Chenopodium album) grains. Cogent Food Agric. 2015;1:1095052. doi: 10.1080/23311932.2015.1095052. DOI

Guo Z., Li X., Yang D., Lei A., Zhang F. Structural and functional properties of chestnut starch based on high-pressure homogenization. LWT Food Sci. Technol. 2022;154:112647. doi: 10.1016/j.lwt.2021.112647. DOI

Liu C., Wang S.J., Chang X.D., Wang S. Structural and functional properties of starches from Chinese chestnuts. Food Hydrocoll. 2015;43:568–576. doi: 10.1016/j.foodhyd.2014.07.014. DOI

Zehra K., Nawab A., Alam F., Hadi A., Raza M. Development of novel biodegradable water chestnut starch/PVA composite film. Evaluation of plasticizer effect over physical, barrier, and mechanical properties. J. Food Process Preserv. 2022;46:e16334. doi: 10.1111/jfpp.16334. DOI

Ch C., He Y., Xiao X., Chen B., Zhou Y., Tan X., Ji Z., Zhang Y., Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int. J. Biol. Macromol. 2023;225:557–564. doi: 10.1016/j.ijbiomac.2022.11.111. PubMed DOI

Adewale Oderinde A., Ibikunle A.A., Bakre L.G., Babarinde N.A. Effects of acetylation, acid-thinning and oxidation on Chrysophyllum albidum (African Star Apple) kernel native starch. Chem. Papers. 2023;77:5385–5394. doi: 10.1007/s11696-023-02870-9. DOI

Yang Y., Chen Y., Jin Y., Liu J., Qin X., Liu W., Guo L. Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. Food Biosci. 2022;46:101521. doi: 10.1016/j.fbio.2021.101521. DOI

Singh R., Sharanagat V.S. Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch. Int. J. Biol. Macromol. 2020;164:1061–1069. doi: 10.1016/j.ijbiomac.2020.07.185. PubMed DOI

Zhang L., Chen Y., Zeng J., Zang J., Liang Q., Tang D., Wang Z., Yin Z. Digestive and physicochemical properties of small granular starch from Euryale ferox seeds growing in Yugan of China. Food Biophys. 2022;17:126–135. doi: 10.1007/s11483-021-09706-7. DOI

Ni’mah Y.L., Suprapto S., Harmami, Ulfin I., Fauziyah P.A. The fabrication of water-soluble chitosan capsule shell modified by alginate and gembili starch (Dioscorea esculenta L.) J. Renew. Mater. 2022;10:2365–2376. doi: 10.32604/jrm.2022.020001. DOI

Wang Y.-C., Liang Y.-C., Huang F.-L., Chang W.-C. Effect of freeze–thaw cycles on physicochemical and functional properties of ginger starch. Processes. 2023;11:1828. doi: 10.3390/pr11061828. DOI

Zeng J.-C., Xiao P.-J., Ling L.-J., Zhang L., Tang D.-B., Zhang Q.-F., Chen J.-G., Li J.-E., Yin Z.-P. Processing, digestion property and structure characterization of slowly digestible gorgon nut starch. Food Sci. Biotechnol. 2022;31:49–59. doi: 10.1007/s10068-021-01007-6. PubMed DOI PMC

Tung N.T., Thuy L.T.H., Luong N.T., Khoi N.V., Ha P.T.T., Thang N.H. The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition. J. Indian Chem. Soc. 2021;98:100192. doi: 10.1016/j.jics.2021.100192. DOI

Kushwaha R., Kaur S., Kaur D. Potential of jackfruit (Artocarpus Heterophyllus Lam.) seed starch as an alternative to the commercial starch source–A review. Food Rev. Int. 2023;39:2635–2654. doi: 10.1080/87559129.2021.1963979. DOI

Xu H., Fu X., Ding Z., Kong H., Ding S. Effect of ozone and high-pressure homogenization on the physicochemical, functional, and in vitro digestibility properties of lily starch. J. Food Process Preserv. 2021;45:e16076. doi: 10.1111/jfpp.16076. DOI

Zhang Y., Zeng H., Wang Y., Zeng S., Zheng B. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chem. 2014;155:311–318. doi: 10.1016/j.foodchem.2014.01.036. PubMed DOI

Rather J.A., Makroo H.A., Showkat Q.A., Majid D., Dar B.N. Recovery of gelatin from poultry waste: Characteristics of the gelatin and lotus starch-based coating material and its application in shelf-life enhancement of fresh cherry tomato. Food Packag. Shelf Life. 2022;31:100775. doi: 10.1016/j.fpsl.2021.100775. DOI

Lagunes-Delgado C., Agama-Acevedo E., Patino-Rodríguez O., Martinez M.M., Bello-Pérez L.A. Recovery of mango starch from unripe mango juice. LWT-Food Sci. Technol. 2022;153:112514. doi: 10.1016/j.lwt.2021.112514. DOI

Nayak P., Rayaguru K., Brahma S., Routray W., Dash S.K. Standardization of process protocol for isolation of starch from mango kernel and its characterization. J. Sci. Food Agric. 2021;102:2813–2825. doi: 10.1002/jsfa.11622. PubMed DOI

Mahajan P., Bera M.B., Panesar P.S. Structural, functional, textural characterization and in vitro digestibility of underutilized Kutki millet (Panicum sumatrense) starch. LWT-Food Sci. Technol. 2022;154:112831. doi: 10.1016/j.lwt.2021.112831. DOI

Bangar S.P., Sandhu K.S., Rusu A.V., Kaur P., Purewal S.S., Kaur M., Kaur N., Trif M. Proso-millet-starch-based edible films: An innovative approach for food industries. Coatings. 2021;11:1167. doi: 10.3390/coatings11101167. DOI

Li Y., Qi Y., Li H., Chen Z., Xu B. Improving the cold water swelling properties of oat starch by subcritical ethanol-water treatment. Int. J. Biol. Macromol. 2022;194:594–601. doi: 10.1016/j.ijbiomac.2021.11.102. PubMed DOI

Biswal A.K., Mishra S., Bhavy M.B., Samal A.K., Merugu R., Singh M.K., Misra P.K. Identifcation of starch with assorted shapes derived from the fleshy root tuber of Phoenix sylvestris: Extraction, morphological and techno-functional characterization. J. Food Meas. Charact. 2022;16:1688–1701. doi: 10.1007/s11694-021-01261-6. DOI

Chavez-Salazar A., Alvarez-Barreto C.I., Hoyos-Leyva J.D., Bello-Pérez L.A., Castellanos-Galeano F.J. Drying processes of OSA-modified plantain starch trigger changes in its functional properties and digestibility. LWT-Food Sci. Technol. 2022;154:112846. doi: 10.1016/j.lwt.2021.112846. DOI

Yuan T., Ye F., Chen T., Li M., Zhao G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.) Food Hydrocoll. 2022;122:107115. doi: 10.1016/j.foodhyd.2021.107115. DOI

Li G., Wang S., Zhu F. Physicochemical properties of quinoa starch. Carbohydr. Polym. 2016;137:328–338. doi: 10.1016/j.carbpol.2015.10.064. PubMed DOI

Pech-Cohuo S.C., Hernandez-Colula J., Gonzalez-Canche N.G., Salgado-Transito I., Uribe-Calderon J., Cervantes-Uc J.M., Cuevas-Bernardino J.C., Ayora -Talavera T., Pacheco N. Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Adv. 2021;6:875–880. doi: 10.1557/s43580-021-00134-w. DOI

Noor M.H.M., Ngadi N., Suhaidi A.N., Inuwa I.M., Opotu L.A. Response surface optimization of ultrasound-assisted extraction of sago starch from sago pith waste. Starch-Stärke. 2022;74:2100012. doi: 10.1002/star.202100012. DOI

Sudheesh C., Sunooj K.V., George J., Kumar S., Sajeevkumar V.A. Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India. J. Food Meas. Charact. 2019;13:1030. doi: 10.1007/s11694-018-0016-x. DOI

Han L., Qiu S., Cao S., Yu Y., Yu S., Liu Y. Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds. Carbohydr. Polym. 2021;273:118583. doi: 10.1016/j.carbpol.2021.118583. PubMed DOI

Mondal D., Kantamraju P., Jha S., Sundarrao G.S., Bhowmik A., Chakdar H., Mandal S., Sahana N., Roy B., Madhab Bhattacharya P., et al. Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Sci. Rep. 2021;11:4786. doi: 10.1038/s41598-021-83921-7. PubMed DOI PMC

Gani A., Ashwar B.A., Akhter G., Gani A., Shah A., Masoodi F.A., Wani A. Resistant starch from five Himalayan rice cultivars and Horse chestnut: Extraction method optimization and characterization. Sci. Rep. 2020;10:4097. doi: 10.1038/s41598-020-60770-4. PubMed DOI PMC

Wu C., Ji G., Gao F., Qian J.-Y., Zhang L., Li Q., Zhang C. Effect of heat-moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch. Food Sci. Nutr. 2021;9:6720–6727. doi: 10.1002/fsn3.2622. PubMed DOI PMC

Navaf M., Sunooj K.V., Krishna N.U., Aaliya B., Sudheesh C., Akhila P.P., Sabu S., Sasidharan A., Mir S.A., George J. Effect of different hydrothermal treatments on pasting, textural, and rheological properties of single and dual modified Corypha Umbraculifera L. starch. Starch-Stärke. 2022;74:2100236. doi: 10.1002/star.202100236. DOI

Akinyosoye T.S., Nwokocha L.M. Morphological, structural, and paste characteristics of native and heat-moisture treated Treculia africana starch. Starch-Stärke. 2022;74:2100196. doi: 10.1002/star.202100196. DOI

Galindez A., Daz L.D., Homez-Jara A., Eim V.S., Váquiro H.A. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr. Polym. 2019;215:143–150. doi: 10.1016/j.carbpol.2019.03.074. PubMed DOI

Chiotelli E., Le Meste M. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem. 2002;79:286–293. doi: 10.1094/CCHEM.2002.79.2.286. DOI

Lindeboom N., Chang P.R., Tyler R.T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch-Starke. 2004;56:89–99. doi: 10.1002/star.200300218. DOI

Ma M., Zhu H., Liu Z., Sui Z., Corke H. Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocoll. Part B. 2022;124:107318. doi: 10.1016/j.foodhyd.2021.107318. DOI

He W., Wei C. Progress in C-type starches from different plant sources. Food Hydrocoll. 2017;73:162–175. doi: 10.1016/j.foodhyd.2017.07.003. DOI

Cardoso G.J., Kipp S.D.M., Garcia V.A.S., Carvalho R.A., Vanin F.M. Arrowroot starch (Maranta arundinacea) as a bread ingredient for product development. J. Food Process Preserv. 2022;46:e16251. doi: 10.1111/jfpp.16251. DOI

Esquivel-Fajardo E.A., Martinez-Ascencio E.U., Oseguera-Toledo M.E., Londono-Restrepo S.M., Rodriguez-García M.E. Influence of physicochemical changes of the avocado starch throughout its pasting profile: Combined extraction. Carbohydr. Polym. 2022;281:119048. doi: 10.1016/j.carbpol.2021.119048. PubMed DOI

Zhou R., Wang Y., Wang Z., Liu K., Wang Q., Bao H. Effects of Auricularia auricula-judae polysaccharide on pasting, gelatinization, rheology, structural properties and in vitro digestibility of kidney bean starch. Int. J. Biol. Macromol. 2021;191:1105–1113. doi: 10.1016/j.ijbiomac.2021.09.110. PubMed DOI

Wang N., Dong Y., Dai Y., Zhang H., Hou H., Wang W., Ding X., Zhang H., Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res. Int. 2023;165:112532. doi: 10.1016/j.foodres.2023.112532. PubMed DOI

Jacinto Almeida R.L., Santos N.C., da Silva G.M., Fonseca Feitoza J.V., de Alcântara Silva V.M., de Alcântara Ribeiro V.H., da Silva Eduardo R., de Sousa Muniz C.E. Effects of hydrothermal pretreatments on thermodynamic and technological properties of red bean starch. J. Food Process. Eng. 2022;45:e13994. doi: 10.1111/jfpe.13994. DOI

Liu W., Zhang Y., Wang R., Li J., Pan W., Zhang X., Xiao W., Wen H., Xie J. Chestnut starch modification with dry heat treatment and addition of xanthan gum: Gelatinization, structural and functional properties. Food Hydrocoll. 2022;124:107205. doi: 10.1016/j.foodhyd.2021.107205. DOI

Liu C., Yan H., Liu S., Chang X. Influence of phosphorylation and acetylation on structural, physicochemical and functional properties of chestnut starch. Polymers. 2022;14:172. doi: 10.3390/polym14010172. PubMed DOI PMC

Lin Y., Liu L., Li L., Xu Y., Zhang Y., Zeng H. Properties and digestibility of a novel porous starch from lotus seed prepared via synergistic enzymatic treatment. Int. J. Biol. Macromol. 2022;194:144–152. doi: 10.1016/j.ijbiomac.2021.11.196. PubMed DOI

Shi L., Li Y., Lin L., Bian X., Wei C. Effects of variety and growing location on physicochemical properties of starch from sweet potato root tuber. Molecules. 2021;26:7137. doi: 10.3390/molecules26237137. PubMed DOI PMC

Parra D.O., Daza Ramírez L.D., Sandoval-Aldana A., Eim V.S., Váquiro H.A. Annealing treatment of ulluco starch: Effect of moisture content and time on the physicochemical properties. J. Food Process. Preserv. 2022;46:e16353. doi: 10.1111/jfpp.16353. DOI

Parra D.O., Eim V.S., Váquiro H.A. Influence of ulluco starch concentration on the physicochemical properties of starch–chitosan biocomposite films. Polymers. 2021;13:4232. PubMed PMC

Hanashiro I., Abe J., Huzukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 1996;283:151–159. doi: 10.1016/0008-6215(95)00408-4. DOI

Tang H.J., Ando H., Watanabe K., Takeda Y., Mitsunaga T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydr. Res. 2001;330:241–248. doi: 10.1016/S0008-6215(00)00292-5. PubMed DOI

Jane J., Chen Y.Y., Lee L.F., McPherson A.E., Wong K.S., Radosavljevic M., Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;78:629–637. doi: 10.1094/CCHEM.1999.76.5.629. DOI

Annor G.A., Marcone M., Bertoft E., Seetharaman K. Unit and internal chain profile of millet amylopectin. Cereal Chem. 2014;91:29–34. doi: 10.1094/CCHEM-08-13-0156-R. DOI

Ratnayake W.S., Hoover R., Shahidi F., Perera C., Jane J. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 2001;74:189–202. doi: 10.1016/S0308-8146(01)00124-8. DOI

de Dios-Avila N., Tirado-Gallegos J.M., Rios-Velasco C., Luna-Esquivel G., Isiordia-Aquino N., Zamudio-Flores P.B., Estrada-Virgen M.O., Cambero-Campos O.J. Physicochemical, structural, thermal and rheological properties of flour and starch isolated from avocado seeds of Landrace and Hass cultivars. Molecules. 2022;27:910. doi: 10.3390/molecules27030910. PubMed DOI PMC

Li G., Zhu F. Physicochemical, rheological, and emulsification properties of nonenyl succinic anhydride (NSA) modified quinoa starch. Int. J. Biol. Macromol. 2021;193:1371–1378. doi: 10.1016/j.ijbiomac.2021.10.199. PubMed DOI

Hongsprabhas P., Israkarn K., Rattanawattanaprakit C. Architectural changes of heated mungbean, rice and cassava starch granules: Effects of hydrocolloids and protein-containing envelope. Carbohydr. Polym. 2007;67:614–622. doi: 10.1016/j.carbpol.2006.07.012. DOI

Hussain S., Mohamed A.A., Alamri M.S., Ibraheem M.A., Qasem A.A.A., Alsulami T., Ababtain I.A. Effect of cactus (Opuntia ficus-indica) and acacia (Acacia seyal) gums on the pasting, thermal, textural, and rheological properties of corn, sweet potato, and Turkish bean starches. Molecules. 2022;27:701. doi: 10.3390/molecules27030701. PubMed DOI PMC

Crosbie G.B., Ross A.S., editors. The RVA Handbook. 5th ed. AACC International; St. Paul, MN, USA: 2015. pp. 138–140.

Asmeda R., Noorlaila A., Norziah M.H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour. Food Chem. 2016;191:45–51. doi: 10.1016/j.foodchem.2015.05.095. PubMed DOI

Sit N., Misra S., Deka S.C. Physicochemical, functional, textural and colour characteristics of starches isolated from four taro cultivars of North-East India. Starch-Stärke. 2013;65:1011–1021. doi: 10.1002/star.201300033. DOI

Vengaiah P.C., Murthy G.N., Prasad K.R., Kumari K.U., Raj S.A. Physico-chemical and functional characteristics of palmyrah (Borassus flabellifer L.) spongy haustorium flour. J. Plantation Crops. 2013;41:437–440.

Mehfooz T., Ali T.M., Ahsan M., Abdullah S., Hasnain A. Use of hydroxypropylated barley starch as partial casein replacer in imitation mozzarella cheese. J. Food Process Preserv. 2021;45:e16094. doi: 10.1111/jfpp.16094. DOI

Photinam R., Moongngarm A., Paseephol T. Process optimization to increase resistant starch in vermicelli prepared from mung bean and cowpea starch. Emir. J. Food Agric. 2016;28:449–458.

Rodboontheng W., Uttapap D., Wandee Y., Udchumpisa W., Kotatha D., Puttanlek C., Rungsardthong V. Simple thermal and freezing treatments to improve absorption capacity and alter digestibility of canna starch granules. Int. J. Biol. Macromol. 2022;194:861–869. doi: 10.1016/j.ijbiomac.2021.11.141. PubMed DOI

Mohamed H.I., Fawzi E.M., Basit A., Kaleemullah, Lone R., Sofy M.R. Sorghum: Nutritional factors, bioactive compounds, pharmaceutical and application in food systems: A review. Phyton. 2022;91:1303–1325. doi: 10.32604/phyton.2022.020642. DOI

Šárka E., Sluková M., Henke S. Changes of phenolics during cooking extrusion: A review. Foods. 2021;10:2100. doi: 10.3390/foods10092100. PubMed DOI PMC

Escobar-Puentes A.A., Reyes-Lopez S.Y., de Jesús Ruíz Baltazar A., Lopez-Teros V., Wall-Medrano A. Molecular interaction of β-carotene with sweet potato starch: A bleaching-restitution assay. Food Hydrocoll. 2022;127:107522. doi: 10.1016/j.foodhyd.2022.107522. DOI

Kulp K. Characteristics of small-granule starch of flour and wheat. Cereal Chem. 1973;50:666–679.

Englyst H.N., Anderson V., Cummings J.H. Starch and non-starch polysaccharides in some cereal foods. J. Sci. Food Agric. 1983;34:1434–1440. doi: 10.1002/jsfa.2740341219. PubMed DOI

Wu X., Yu H., Bao G., Luan M., Wang C. Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism. J. Food Meas. Charact. 2022;16:945–956. doi: 10.1007/s11694-021-01222-z. DOI

Warren F.J., Gidley M.J., Flanagan B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016;139:35–42. doi: 10.1016/j.carbpol.2015.11.066. PubMed DOI

Pelissari F.M., Andrade-Mahecha M.M., Sobral P.J.d.A., Menegalli F.C. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca) Starch-Stärke. 2012;64:382–391. doi: 10.1002/star.201100133. DOI

Kizil R., Irudayaraj J., Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002;50:3912–3918. doi: 10.1021/jf011652p. PubMed DOI

Fan D., Ma W., Wang L., Huang J., Zhao J., Zhang H., Chen W. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch-Stärke. 2012;64:598–606. doi: 10.1002/star.201100200. DOI

Dankar I., Haddarah A., Omar F.E., Pujolà M., Sepulcre F. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 2018;260:7–12. doi: 10.1016/j.foodchem.2018.03.138. PubMed DOI

Olsson A.-M., Salmén L. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr. Res. 2004;339:813–818. doi: 10.1016/j.carres.2004.01.005. PubMed DOI

Liu K., Zhang B.J., Chen L., Li X.X., Zheng B. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chem. 2019;271:102–108. doi: 10.1016/j.foodchem.2018.07.193. PubMed DOI

Ren Y., Jiang L., Wang W., Xiao Y., Liu S., Luo Y., Shen M., Xie J. Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocoll. 2020;99:105371. doi: 10.1016/j.foodhyd.2019.105371. DOI

Xiao Y., Liu S., Shen M., Jiang L., Ren Y., Luo Y., Xie J. Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch-Mesona chinensis polysaccharides gels. Food Hydrocoll. 2020;99:105327. doi: 10.1016/j.foodhyd.2019.105327. DOI

Demiate I.M., Dupuy N., Huvenne J.P., Cereda M.P., Wosiacki G. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydr. Polym. 2000;42:149–158. doi: 10.1016/S0144-8617(99)00152-6. DOI

Fang J.M., Fowler P.A., Sayers C., Williams P.A. The chemical modification of a range of starches under aqueous reaction conditions. Carbohydr. Polym. 2004;55:283–289. doi: 10.1016/j.carbpol.2003.10.003. DOI

Hu X., Shi J., Zhang F., Zou X., Holmes M., Zhang W., Huang X., Cui X., Xue J. Determination of retrogradation degree in starch by Mid-infrared and Raman spectroscopy during storage. Food Anal. Methods. 2017;10:3694–3705. doi: 10.1007/s12161-017-0932-0. DOI

Flores-Morales A., Jiménez-Estrada M., Mora-Escobedo R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012;87:61–68. doi: 10.1016/j.carbpol.2011.07.011. PubMed DOI

Nobrega M.M., Olivato J.B., Müller C.M., Yamashita F. Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and Raman spectroscopic characterization. Polímeros. 2012;22:475–480. doi: 10.1590/S0104-14282012005000068. DOI

Bernardino-Nicanor A., Acosta-García G., Güemes-Vera N., Montañez-Soto J.L., de los Ángeles Vivar-Vera M., González-Cruz L. Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J. Food Sci. Technol. 2017;54:933–943. doi: 10.1007/s13197-016-2370-1. PubMed DOI PMC

Liu Y., Xu Y., Yan Y., Hu D., Yang L., Shen R. Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch-Stärke. 2015;67:612–619. doi: 10.1002/star.201400246. DOI

De Gussem K., Vandenabeele P., Verbeken A., Moens L. Raman spectroscopic study of Lactarius spores (Russulales, Fungi) Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005;61:2896–2908. doi: 10.1016/j.saa.2004.10.038. PubMed DOI

Vandenabeele P., Wehling B., Moens L., Edwards H., De Reu M., Van Hooydonk G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta. 2000;407:261–274. doi: 10.1016/S0003-2670(99)00827-2. DOI

Pigorsch E. Spectroscopic characterisation of cationic quaternary ammonium starches. Starch-Stärke. 2009;61:129–138. doi: 10.1002/star.200800090. DOI

Phillips D.L., Xing J., Chong C.K., Liu H., Corke H. Determination of the degree of succinylation in diverse modified starches by Raman spectroscopy. J. Agric. Food Chem. 2000;48:5105–5108. doi: 10.1021/jf9907790. PubMed DOI

Zhu F. NMR spectroscopy of starch systems. Food Hydrocoll. 2017;63:611–624. doi: 10.1016/j.foodhyd.2016.10.015. DOI

Abdul Hadi N., Wiege B., Stabenau S., Marefati A., Rayner M. Comparison of three methods to determine the degree of substitution of quinoa and rice starch acetates, propionates, and butyrates: Direct stoichiometry, FTIR, and 1H-NMR. Foods. 2020;9:83. doi: 10.3390/foods9010083. PubMed DOI PMC

Cuenca P., Ferrero S., Albani O. Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocoll. 2020;100:105430. doi: 10.1016/j.foodhyd.2019.105430. DOI

Elomaa M., Asplund T., Soininen P., Laatikainen R., Peltonen S., Hyvärinen S., Urtti A. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr. Polym. 2004;57:261–267. doi: 10.1016/j.carbpol.2004.05.003. DOI

Bai Y., Shi Y.C., Herrera A., Prakash O.M. Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydr. Polym. 2011;83:407–413. doi: 10.1016/j.carbpol.2010.07.053. DOI

Fan D., Ma W., Wang L., Huang J., Zhang F., Zhao J., Zhang H., Chen W. Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydr. Polym. 2013;92:1395–1401. doi: 10.1016/j.carbpol.2012.09.072. PubMed DOI

Lopez-Rubio A., Flanagan B.M., Gilbert E.P., Gidley M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers. 2008;89:761–768. doi: 10.1002/bip.21005. PubMed DOI

Tan I., Flanagan B.M., Halley P.J., Whittaker A.K., Gidley M.J. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules. 2007;81:885–891. doi: 10.1021/bm060988a. PubMed DOI

Riley I.M., Nivelle M.A., Ooms N., Delcour J.A. The use of time domain 1H NMR to study proton dynamics in starch-rich foods: A review. Compr. Rev. Food Sci. Food Saf. 2022;21:4738–4775. doi: 10.1111/1541-4337.13029. PubMed DOI

Biduski B., Amaral do Evangelho J., Oliveira Lima K., de Mello El Halal S.L., da Rosa Zavareze E., Guerra Dias A.R., Pinto V.Z. Heat–moisture treatment on pinhão starch impacts the properties of the biodegradable films. Starch-Stärke. 2023;75:2200209. doi: 10.1002/star.202200209. DOI

Zhu F. Underutilized and unconventional starches: Why should we care? Trends Food Sci. Technol. 2020;100:363–373. doi: 10.1016/j.tifs.2020.04.018. DOI

Du S.K., Jiang H., Ai Y., Jane J.L. Physicochemical and functional properties of whole legume flour. Carbohydr. Polym. 2014;108:308–313. doi: 10.1016/j.lwt.2013.06.001. PubMed DOI

Malinski E., Daniel J.R., Zhang X.X., Whistler R.L. Isolation of small starch granules and determination of their fat mimic characteristics. Cereal Chem. 2003;80:1–4. doi: 10.1094/CCHEM.2003.80.1.1. DOI

Šárka E., Bubník Z. Morfologie, chemická struktura, vlastnosti a možnost využití pšeničného B-škrobu. Chem. Listy. 2010;104:318–325.

Šárka E., Krulis Z., Kotek J., Ruzek L., Korbarova A., Bubnik Z., Ruzkova M. Application of wheat B-starch in biodegradable plastic materials. Czech J. Food Sci. 2011;29:232–242. doi: 10.17221/292/2010-CJFS. DOI

Nain V., Kaur M., Sandhu K.S., Thory R., Sinhmar A. Development of starch nanoparticle from mango kernel in comparison with cereal, tuber, and legume starch nanoparticles: Characterization and cytotoxicity. Starch-Stärke. 2022;74:2100252. doi: 10.1002/star.202100252. DOI

de Sousa Martinez de Freitas A., Bernardo da Silva A.P., Stieven Montagna L., Araujo Nogueira I., Kevin Carvalho N., Siqueira de Faria V., Bomfim dos Santos N., Lemes A.P. Thermoplastic starch nanocomposites: Sources, production and applications—A review. J. Biomater. Sci. Polymer Ed. 2022;33:900–945. doi: 10.1080/09205063.2021.2021351. PubMed DOI

Sahoo P.K., Rana P.K. Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsorbing composite. J. Mater. Sci. 2006;41:6470–6475. doi: 10.1007/s10853-006-0504-y. DOI

Šárka E., Kruliš Z., Kotek J., Růžek L., Koláček J., Hrušková K., Bubník Z. Biodegradabilní kompozitní materiály na bázi pšeničného B-škrobu s upotřebením v zemědělství. Listy Cukrovar. Řep. 2011;127:402–405.

Tarique J., Zainudin E.S., Sapuan S.M., Ilyas R.A., Khalina A. Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers. 2022;14:388. doi: 10.3390/polym14030388. PubMed DOI PMC

Wang X.L., Yang K.K., Wang Y.Y. Properties of starch blends with biodegradable biopolymers. J. Macromol. Sci. Part C. 2003;43:385–409. doi: 10.1081/MC-120023911. DOI

Kierulf A., Whaley J., Liu W.C., Enayati M., Tan C., Perez-Herrera M., You Z., Abbaspourrad A. Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering emulsifiers. Food Chem. 2020;315:126246. doi: 10.1016/j.foodchem.2020.126246. PubMed DOI

Pagno C.H., Costa T.M., de Menezes E.W., Benvenutti E.V., Hertz P.F., Matte C.R., Tosati J.V., Monteiro A.R., Rios A.O., Flores S.H. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 2015;173:755–762. doi: 10.1016/j.foodchem.2014.10.068. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...