The Effects of Silica Fume and Superplasticizer Type on the Properties and Microstructure of Reactive Powder Concrete
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FW01010021
Technology Agency of the Czech Republic
FAST/FCH-J-23-8248
Ministry of Education, Youth and Sports of Czech Republic
FCH-S-23-8208
Ministry of Education, Youth and Sports of Czech Republic
PubMed
37895652
PubMed Central
PMC10608144
DOI
10.3390/ma16206670
PII: ma16206670
Knihovny.cz E-zdroje
- Klíčová slova
- microstructure, pozzolanic reaction, reactive powder concrete, silica fume, superplasticizer, ultra-high-performance concrete,
- Publikační typ
- časopisecké články MeSH
This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5-4.0% superplasticizer and 15-25% silica fume.
Bogges s r o Hněvkovského 30 65 617 00 Brno Czech Republic
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Research Institute of Building Materials Hněvkovského 30 65 617 00 Brno Czech Republic
Zobrazit více v PubMed
Richard P., Cheyrezy M. Composition of Reactive Powder Concretes. Cem. Concr. Res. 1995;25:1501–1511. doi: 10.1016/0008-8846(95)00144-2. DOI
Richard P., Cheyrezy M.H. SP-144: Concrete Technology: Past, Present, and Future. American Concrete Institute; Farmington Hills, MI, USA: 1994. Reactive Powder Concretes with High Ductility and 200–800 Mpa Compressive Strength.
Sanjuán M.Á., Andrade C. Reactive Powder Concrete: Durability and Applications. Appl. Sci. 2021;11:5629. doi: 10.3390/app11125629. DOI
Mestrovic D., Cizmar D., Stanilovic V. Computational Methods and Experiments in Materials Characterisation III. WIT Press; Southampton, UK: 2007. Reactive Powder Concrete: Material for the 21st Century; pp. 127–133.
Gu C., Ye G., Sun W. Ultrahigh Performance Concrete-Properties, Applications and Perspectives. Sci. China Technol. Sci. 2015;58:587–599. doi: 10.1007/s11431-015-5769-4. DOI
Ahmed S., Al-Dawood Z., Abed F., Mannan M.A., Al-Samarai M. Impact of Using Different Materials, Curing Regimes, and Mixing Procedures on Compressive Strength of Reactive Powder Concrete—A Review. J. Build. Eng. 2021;44:103238. doi: 10.1016/j.jobe.2021.103238. DOI
Mayhoub O.A., Nasr E.-S.A.R., Ali Y.A., Kohail M. The Influence of Ingredients on the Properties of Reactive Powder Concrete: A Review. Ain Shams Eng. J. 2021;12:145–158. doi: 10.1016/j.asej.2020.07.016. DOI
Cheyrezy M., Maret V., Frouin L. Microstructural Analysis of RPC (Reactive Powder Concrete) Cem. Concr. Res. 1995;25:1491–1500. doi: 10.1016/0008-8846(95)00143-Z. DOI
Anas M., Khan M., Bilal H., Jadoon S., Khan M.N. Fiber Reinforced Concrete: A Review. Eng. Proc. 2022;22:3. doi: 10.3390/engproc2022022003. DOI
Wang X., Fan F., Lai J., Xie Y. Steel Fiber Reinforced Concrete: A Review of Its Material Properties and Usage in Tunnel Lining. Structures. 2021;34:1080–1098. doi: 10.1016/j.istruc.2021.07.086. DOI
Yang G., Wei J., Yu Q., Huang H., Li F. Investigation of the Match Relation between Steel Fiber and High-Strength Concrete Matrix in Reactive Powder Concrete. Materials. 2019;12:1751. doi: 10.3390/ma12111751. PubMed DOI PMC
Deng Y., Zhang Z., Shi C., Wu Z., Zhang C. Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. Engineering. 2022;22:215–232. doi: 10.1016/j.eng.2021.11.019. DOI
Ductal Projects. [(accessed on 18 September 2023)]. Available online: https://www.ductal.com/en/projects.
Chandra S., Berntsson L. 9—Use of Silica Fume in Concrete. In: Chandra S., editor. Waste Materials Used in Concrete Manufacturing. William Andrew Publishing; Westwood, NJ, USA: 1996. pp. 554–623.
Aïtcin P.-C. 4—Supplementary Cementitious Materials and Blended Cements. In: Aïtcin P.-C., Flatt R.J., editors. Science and Technology of Concrete Admixtures. Woodhead Publishing; Sawston, UK: 2016. pp. 53–73.
Taylor H.F.W. Cement Chemistry. Thomas Telford Publishing; London, UK: 1997. Composite Cements.
Kurdowski W. Cement and Concrete Chemistry. Springer; Dordrecht, The Netherlands: 2014. Mineral Additions for Cement Production; pp. 533–583.
Ullah R., Qiang Y., Ahmad J., Vatin N.I., El-Shorbagy M.A. Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review. Materials. 2022;15:4131. doi: 10.3390/ma15124131. PubMed DOI PMC
Paredes J.A., Gálvez J.C., Enfedaque A., Alberti M.G. Matrix Optimization of Ultra High Performance Concrete for Improving Strength and Durability. Materials. 2021;14:6944. doi: 10.3390/ma14226944. PubMed DOI PMC
Chan Y.W., Chu S.H. Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete. Cem. Concr. Res. 2004;34:1167–1172. doi: 10.1016/j.cemconres.2003.12.023. DOI
Huang J., Li W., Huang D., Wang L., Chen E., Wu C., Wang B., Deng H., Tang S., Shi Y., et al. Fractal Analysis on Pore Structure and Hydration of Magnesium Oxysulfate Cements by First Principle, Thermodynamic and Microstructure-Based Methods. Fractal Fract. 2021;5:164. doi: 10.3390/fractalfract5040164. DOI
Zhou Y., Li W., Peng Y., Tang S., Wang L., Shi Y., Li Y., Wang Y., Geng Z., Wu K. Hydration and Fractal Analysis on Low-Heat Portland Cement Pastes Using Thermodynamics-Based Methods. Fractal Fract. 2023;7:606. doi: 10.3390/fractalfract7080606. DOI
Sultan H.K., Zinkaah O.H., Rasheed A.A., Alridha Z., Alhawat M. Producing Sustainable Modified Reactive Powder Concrete Using Locally Available Materials. Innov. Infrastruct. Solut. 2022;7:342. doi: 10.1007/s41062-022-00948-z. DOI
Shen M., Zhou L., Chen Z., Shen Y., Huang B., Lv J. Effects of Basalt Powder and Silica Fume on Ultra-High-Strength Cementitious Matrix: A Comparative Study. Case Stud. Constr. Mater. 2022;17:e01397. doi: 10.1016/j.cscm.2022.e01397. DOI
Bahmani H., Mostofinejad D. Microstructure of Ultra-High-Performance Concrete (UHPC)—A Review Study. J. Build. Eng. 2022;50:104118. doi: 10.1016/j.jobe.2022.104118. DOI
Ju Y., Tian K., Liu H., Reinhardt H.W., Wang L. Experimental Investigation of the Effect of Silica Fume on the Thermal Spalling of Reactive Powder Concrete. Constr. Build. Mater. 2017;155:571–583. doi: 10.1016/j.conbuildmat.2017.08.086. DOI
Ge W., Wang A., Zhang Z., Ge Y., Chen Y., Li W., Jiang H., Shuai H., Sun C., Yao S., et al. Study on the Workability, Mechanical Property and Water Absorption of Reactive Powder Concrete. Case Stud. Constr. Mater. 2023;18:e01777. doi: 10.1016/j.cscm.2022.e01777. DOI
Ramachandran V.S., Malhotra V.M. Concrete Admixtures Handbook. Elsevier; Amsterdam, The Netherlands: 1996. Superplasticizers; pp. 410–517. DOI
Gelardi G., Flatt R.J. Science and Technology of Concrete Admixtures. Elsevier; Amsterdam, The Netherlands: 2016. Working Mechanisms of Water Reducers and Superplasticizers; pp. 257–278. DOI
Flatt R., Schober I. Understanding the Rheology of Concrete. Woodhead Publishing; Sawston, UK: 2012. Superplasticizers and the Rheology of Concrete; pp. 144–208. DOI
Sha S., Wang M., Shi C., Xiao Y. Influence of the Structures of Polycarboxylate Superplasticizer on Its Performance in Cement-Based Materials-A Review. Constr. Build. Mater. 2020;233:117257. doi: 10.1016/j.conbuildmat.2019.117257. DOI
Nadiger A., Madhavan M.K. Influence of Mineral Admixtures and Fibers on Workability and Mechanical Properties of Reactive Powder Concrete. J. Mater. Civ. Eng. 2019;31:04018394. doi: 10.1061/(ASCE)MT.1943-5533.0002596. DOI
Li L.G., Kwan A.K.H. Effects of Superplasticizer Type on Packing Density, Water Film Thickness and Flowability of Cementitious Paste. Constr. Build. Mater. 2015;86:113–119. doi: 10.1016/j.conbuildmat.2015.03.104. DOI
Chen Y., Matalkah F., Soroushian P., Weerasiri R., Balachandra A. Optimization of Ultra-High Performance Concrete, Quantification of Characteristic Features. Cogent Eng. 2019;6:1558696. doi: 10.1080/23311916.2018.1558696. DOI
Antoni, Halim J.G., Kusuma O.C., Hardjito D. Optimizing Polycarboxylate Based Superplasticizer Dosage with Different Cement Type. Procedia Eng. 2017;171:752–759. doi: 10.1016/j.proeng.2017.01.442. DOI
Lei L., Zhang L. Synthesis and Performance of a Non-Air Entraining Polycarboxylate Superplasticizer. Cem. Concr. Res. 2022;159:106853. doi: 10.1016/j.cemconres.2022.106853. DOI
Ae C.J., Gettu R. Experimental Study of the Flow Behaviour of Superplasticized Cement Paste. Mater. Struct. 2008;41:1581–1593. doi: 10.1617/s11527-008-9350-5. DOI
Papadakis V.G. Experimental Investigation and Theoretical Modeling of Silica Fume Activity in Concrete. Cem. Concr. Res. 1999;29:79–86. doi: 10.1016/S0008-8846(98)00171-9. DOI
Methods of Testing Cement—Determination of Strength. British Standards Institution; London, UK: 2005.
Xu D., Tang J., Hu X., Zhou Y., Yu C., Han F., Liu J. Influence of Silica Fume and Thermal Curing on Long-Term Hydration, Microstructure and Compressive Strength of Ultra-High Performance Concrete (UHPC) Constr. Build. Mater. 2023;395:132370. doi: 10.1016/j.conbuildmat.2023.132370. DOI
Kadri E.H., Duval R. Hydration Heat Kinetics of Concrete with Silica Fume. Constr. Build. Mater. 2009;23:3388–3392. doi: 10.1016/j.conbuildmat.2009.06.008. DOI
Ivanov I.M., Kramar L.Y., Orlov A.A. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone. IOP Conf. Ser. Mater. Sci. Eng. 2017;262:012028. doi: 10.1088/1757-899X/262/1/012028. DOI
Janca M., Siler P., Opravil T., Kotrla J. Improving the Dispersion of Silica Fume in Cement Pastes and Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019;583:012022. doi: 10.1088/1757-899X/583/1/012022. DOI
Huang Q., Yin J., Song W.M. Effects of Mineral Admixtures and Superplasticizer on Controlling Hydration Heat of Cementitious Materials. Adv. Mater. Res. 2013;639–640:368–371. doi: 10.4028/www.scientific.net/AMR.639-640.368. DOI
Qing ZHANG Zenall Y.I., Li S., Rongshen C. A Comparative Study on the Pozzolanic Activity between Nano-SiO2 and Silica Fume. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2006;21:153–157. doi: 10.1007/BF02840907. DOI