Processing of Bimetallic Inconel 625-16Mo3 Steel Tube via Supercritical Bend: Study of the Mechanical Properties and Structure
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TK04020189
Technology Agency of the Czech Republic as part of the TAČR THETA IV Program
PubMed
37895778
PubMed Central
PMC10608255
DOI
10.3390/ma16206796
PII: ma16206796
Knihovny.cz E-resources
- Keywords
- Inconel 625, bimetallic material, mechanical properties, microstructure, supercritical bend, welding,
- Publication type
- Journal Article MeSH
Incineration is currently the standard way of disposing of municipal waste. It uses components protected by high-temperature-resistant layers of materials, such as Inconel alloys. Therefore, the objective of the current paper is to study the mechanical properties and structure of a bimetallic Inconel 625-16Mo3 steel tube. The Inconel 625 layer was 3.5 mm thick and was applied to the surface of the tube with a wall thickness of 7 mm via the cold metal transfer method. The bimetallic tube was bent using a supercritical bend (d ≤ 0.7D). This paper is focused on the investigation of the material changes in the Inconel 625 layer areas influenced by the maximum tensile and compressive stresses after the bend. The change in layer thickness after the bend was evaluated and compared to the non-deformed tube. In addition, the local mechanical properties (nanohardness, Young modulus) across the indicated interfacial areas using quasistatic nanoindentation were investigated. Subsequently, a thorough microstructure observation was carried out in areas with maximum tensile and compressive stresses to determine changes in the morphology and size of dendrites related to the effect of tensile or compressive stresses induced by bending. It was found that the grain featured a stretched secondary dendrite axis in the area of tensile stress, but compressive stress imparted a prolongation of the primary dendrite axis.
See more in PubMed
Błoniarz A., Schreiner M., Reinmöller M., Kopia A. Corrosion Resistance of Inconel 625 CMT-cladded layers after long-term exposure to biomass and waste ashes in high-temperature conversion processes. Materials. 2020;13:4374. doi: 10.3390/ma13194374. PubMed DOI PMC
Klučiar P., Barényi I. Nanoindentation Analysis of Inconel 625 Alloy Weld Overlay on 16Mo3 Steel. Manuf. Technol. 2022;22:26–33. doi: 10.21062/mft.2022.013. DOI
Furukawa K. New CMT arc welding process welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Weld. Int. 2006;20:440–445. doi: 10.1533/wint.2006.3598. DOI
Lorenzin G., Rutili G. The innovative use of low heat input in welding: Experiences on “cladding” and brazing using the CMT process. Weld. Int. 2009;23:622–632. doi: 10.1080/09507110802543252. DOI
Solecka M., Kopia A., Radiszewska A., Rutkowski B. Microstructure, microsegregation and nanohardness of CMT cladlayers of Ni-base alloy on 16Mo3 steel. J. Alloys Compd. 2018;751:86–95. doi: 10.1016/j.jallcom.2018.04.102. DOI
Talalaev R., Veinthal R., Laansoo A., Sarkans M. Cold metal transfer (CMT) welding of thin sheet metal products. Est. J. Eng. 2012;18:243–250. doi: 10.3176/eng.2012.3.09. DOI
Selvi S., Vishvaksenan A., Rajasekar E. Cold metal transfer (CMT) technology—An overview. Def. Technol. 2018;14:28–44. doi: 10.1016/j.dt.2017.08.002. DOI
Yang Q., Xia C., Deng Y., Li X., Wang H. Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT) Materials. 2019;12:2525. doi: 10.3390/ma12162525. PubMed DOI PMC
Shchitsyn Y., Kartashev M., Krivonosova E., Olshanskaya T., Trushnikov D. Formation of Structure and Properties of Two-Phase Ti-6Al-4V Alloy during Cold Metal Transfer Additive Deposition with Interpass Forging. Materials. 2021;14:4415. doi: 10.3390/ma14164415. PubMed DOI PMC
Votruba V., Diviš I., Pilsová L., Zeman P., Beránek L., Horváth J., Smolík J. Experimental investigation of CMT discontinuous wire arc additive manufacturing of Inconel 625. Int. J. Adv. Manuf. Technol. 2022;122:711–727. doi: 10.1007/s00170-022-09878-7. DOI
Evangeline A., Sathiya P. Dissimilar Cladding of Ni–Cr–Mo Superalloy over 316L Austenitic Stainless Steel: Morphologies and Mechanical Properties. Met. Mat. Int. 2021;27:1155–1172. doi: 10.1007/s12540-019-00440-x. DOI
Meng W., Lei Y., Wang X., Ma Q., Hu L., Xie H., Yin X. Interface characteristics and mechanical properties of wire-arc depositing Inconel 625 superalloy on ductile cast iron. Surf. Coat. Technol. 2022;440:128493. doi: 10.1016/j.surfcoat.2022.128493. DOI
Slany M., Sedlak J., Zouhar J., Zemcik O., Kouril K., Polzer A., Pokorny Z., Joska Z., Dobrocky D., Studeny Z. Analysis of bimetal pipe bends with a bend of 0.7D with a cladding layer of Inconel 625. Int. J. Adv. Technol. 2021;117:3859–3871. doi: 10.1007/s00170-021-07749-1. DOI
Slany M., Sedlak J., Zouhar J., Zemcik O., Chladil J., Jaros A., Kouril K., Varhanik M., Majerik J., Barenyi I., et al. Material and Dimensional Analysis of Bimetallic Pipe Bend with Defined Bending Radii. Teh. Vjesn. 2021;28:974–982. doi: 10.17559/TV-20200409093723. DOI
Jeong H.-S., Jeon J.-W., Ha M.-Y., Cho J.-R. Finite Element Analysis for Inconel 625 Fine Tube Bending to Predict Deformation Characteristics. Int. J. Precis. Eng. Manuf. 2012;13:1395–1401. doi: 10.1007/s12541-012-0183-3. DOI
Meng Yan M., Wang M., Xu Z., Liu Y., Chen L., Huang H. Analysis on the bending deformation characteristic and crack failure mechanism of thin-walled stainless-steel bellows. Eng. Fail. Anal. 2023;143:106900. doi: 10.1016/j.engfailanal.2022.106900. DOI
Arif A.F.M., Zilbas B.S. Three-point bend testing of HVOF Inconel 625 coating: FEM simulation and experimental investigation. Surf. Coat. Technol. 2006;201:1873–1879. doi: 10.1016/j.surfcoat.2006.03.016. DOI
Singh A.K., Tyagi R., Ranjan V., Sathujoda P. FEM simulation of three-point bending test of Inconel 718 coating on stainless steel substrate. Vibroeng. Procedia. 2018;21:248–252. doi: 10.21595/vp.2018.20400. DOI
Guoa X., Xiong H., Li H., Xu Y., Mad Z., Ali Abd El-Atyc A., Maa Y., Jine K. Forming characteristics of tube free-bending with small bending radii based on a new spherical connection. Int. J. Mach. Tools Manuf. 2018;133:72–84. doi: 10.1016/j.ijmachtools.2018.05.005. DOI
Tosha K. Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening; Proceedings of 2nd Asia-Pacific Forum on Precision Surface Machining and Deburring Technology; Seoul, Korea. 22–24 July 2002.
Rahman M.S., Polycarpou A.A. Nanomechanical and nanoscratch behavior of oxides formed on inconel 617 at 950 °C. J. Mater. Res. 2022;37:580–594. doi: 10.1557/s43578-021-00438-5. DOI
Shehbaz T., Junaid M., Khan F.N., Haider J. Dissimilar P-TIG welding between Inconel 718 and commercially pure Titanium using niobium interlayer. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022;236:2311–2324. doi: 10.1177/09544089221091388. DOI
Dharini T., Kuppusami P., Panda P., Ramaseshan R., Kirubaharan A.M.K. Nanomechanical behaviour of Ni—YSZ nanocomposite coatings on superalloy 690 as diffusion barrier coatings for nuclear applications. Ceram. Int. 2020;46:24183–24193. doi: 10.1016/j.ceramint.2020.06.198. DOI
Christoforou P., Dowding R., Pinna C., Lewis R. Two-layer laser clad coating as a replacement for chrome electroplating on forged steel. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021;235:7120–7138. doi: 10.1177/09544062211010853. DOI
Dean J., Aldrich-Smith G., Clyne T.W. Use of nanoindentation to measure residual stresses in surface layers. Acta Mater. 2011;59:2749–2761. doi: 10.1016/j.actamat.2011.01.014. DOI
Suresh S., Giannakopoulos A.E. A New Method for Residual Stresses by Instrumented Sharp Indentation. Acta Mater. 1998;46:5755–5767. doi: 10.1016/S1359-6454(98)00226-2. DOI
Balasubramaniana S.-S., Prathiksha Ramprasad Dhanpala R.P., Hyderb J., Corlissb M., Hunga W.N. Novel Fatigue Testing of Extruded Inconel 718. Manuf. Lett. 2022;33:322–332. doi: 10.1016/j.mfglet.2022.07.039. DOI
Patel V., Sali A., Hyder J., Corliss M., Hyder D., Hung W. Electron Beam Welding of Inconel 718. Procedia Manuf. 2020;48:428–435. doi: 10.1016/j.promfg.2020.05.065. DOI
Shankar V., Bhanu Sankara Rao K., Mannan S. Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 2001;288:222–232. doi: 10.1016/S0022-3115(00)00723-6. DOI
Rai S.K., Kumar A., Shankar V., Jayakumar T., Rao K.B.S., Raj B. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements. Scr. Mater. 2004;51:59–63. doi: 10.1016/j.scriptamat.2004.03.017. DOI
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1580. doi: 10.1557/JMR.1992.1564. DOI
Fischer-Cripps A.C. Nanoindentation. Springer; Berlin/Heidelberg, Germany: 2011.
Zhu Z., Sui Y., Dai A., Cai Y., Xu L., Wang Z., Chen H., Shao X., Liu W. Effect of again treatment on intergranular corrosion properties of ultra-low iron 625 alloy. Int. J. Corros. 2019;10:9506401.
Dlouhý I., Rehorek L., Seiner H.S., Čížek J., Šiška F. Architectured Multi-Metallic Structures Prepared by Cold Dynamic Spray Deposition. Key Eng. Mater. 2019;810:107–112. doi: 10.4028/www.scientific.net/KEM.810.107. DOI