Tensile Properties of Four Types of ABS Lattice Structures-A Comparative Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0550
Ministry of Education, Science, Research, and Sport of the Slovak Republic
KEGA 005TUKE-4/2021
Ministry of Education, Science, Research, and Sport of the Slovak Republic
KEGA 032TUKE-4/2022
Ministry of Education, Science, Research, and Sport of the Slovak Republic
PubMed
37896334
PubMed Central
PMC10611063
DOI
10.3390/polym15204090
PII: polym15204090
Knihovny.cz E-zdroje
- Klíčová slova
- Acrylonitrile Butadiene Styrene (ABS), additive manufacturing, lattice structure, tensile properties,
- Publikační typ
- časopisecké články MeSH
This article aims to compare the behaviour of four types of lattice structures named Cartesian, Rhomboid, Octagonal, and Starlit under tensile stress loading. The structures were made of Acrylonitrile Butadiene Styrene (ABS) material using the Fused Filament Fabrication (FFF) technique with three different specific volumes (24, 42, and 60%). Five samples of each type were produced, and a total of 60 samples were tested. Experimental testing was performed according to EN ISO 527-1:2012 and EN ISO 527-2:2012. The obtained data were statistically processed, while no outliers were identified. The experimental results pointed out that the specimens' topology, together with the specific volume, very significantly affected the resultant ABS properties of the tested samples made of the same material. The comparative study showed that in terms of ultimate strength, yield strength, and Young's modulus, the Cartesian structure appeared to be the most suitable for tensile stress, and the least suitable structure was the Rhomboid structure. On the other hand, the Rhomboid-type of the structure showed not only the highest amount of absorbed energy but also the highest toughness among the investigated lattice structures, so in the near future, its behaviour under an impact test should be studied.
Faculty of Manufacturing Technologies Technical University in Kosice 080 01 Presov Slovakia
Faculty of Technology Tomas Bata University in Zlin Nam T G Masaryka 275 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Scott J., Gupta N., Weber C., Newsome S., Wohlers T., Caffrey T. Additive Manufacturing: Status and Opportunities. Science and Technology Policy Institute; Washington, DC, USA: 2012.
Sudarmadji N., Tan J.Y., Leong K.F., Chua C.K., Loh Y.T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 2011;7:530–537. doi: 10.1016/j.actbio.2010.09.024. PubMed DOI
Stojadinovic S.M., Majstorovic V.D. Developing engineering ontology for domain coordinate metrology. FME Trans. 2014;42:249–255. doi: 10.5937/fmet1403249s. DOI
Vychytil J., Holeček M. The simple model of cell prestress maintained by cell incompressibility. Math. Comput. Simul. 2010;80:1337–1344. doi: 10.1016/j.matcom.2009.02.005. DOI
Trišović N., Maneski T., Kozak D. Developed procedure for dynamic reanalysis of structures. Strojarstvo. 2010;52:147–158.
Baron P., Dobránsky J., Pollák M., Cmorej T., Kočiško M. Proposal of the Knowledge Application Environment of Calculating Operational Parameters for Conventional Machining Technology. Key Eng. Mater. 2016;669:95–102. doi: 10.4028/www.scientific.net/KEM.669.95. DOI
Messner M.C. Optimal lattice-structured materials. J. Mech. Phys. Solids. 2016;96:162–183. doi: 10.1016/j.jmps.2016.07.010. DOI
Ozcelik B., Ozbay A., Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int. Commun. Heat Mass Transf. 2010;37:1359–1365. doi: 10.1016/j.icheatmasstransfer.2010.07.001. DOI
Jiang B., Wang Z.J., Zhao N.Q. Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 2007;56:169–172. doi: 10.1016/j.scriptamat.2006.08.070. DOI
Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI
Gorguluarslan R.M., Park S.-I., Rosen D.W., Choi S.-K. A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties. J. Mech. Des. 2015;137:111408. doi: 10.1115/1.4031012. DOI
Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI
Jimbo K., Tateno T. Design of isotropic-tensile-strength lattice structure fabricated by AM. J. Soc. Mech. Eng. 2019;85:871. doi: 10.1299/transjsme.18-00098. DOI
Durbaca A.C., Iatan R., Durbaca I., Dinita A., Vasilescu M. Experimental Research on the Triangular Lattice Type Polymer Based Composites Structures for Sandwich Panels Construction. Mater. Plast. 2017;54:639–644. doi: 10.37358/MP.17.4.4916. DOI
Sadali M.F., Hassan M.Z., Ahmad N.H. Modelling of Printed Polylactide Lattice Structure and its Tensile Behaviour; Proceedings of the International Graduate Conference on Engineering, Science and Humanities; Jahor Bahru, Malaysia. 13–15 August 2018.
Plastics—Determination of Tensile Properties. International Organization for Standardization; Geneva, Switzerland: 2019.
An D.S., Kim T.H., Lee E.H. Analytical and Experimental Investigation into the Relative influence of Core and Side Parts on Structures Laminated by Fused Deposition Modeling. Int. J. Precis. Eng. Manuf.-Green Technol. 2020;8:13–27. doi: 10.1007/s40684-019-00177-3. DOI
Farbman D., McCoy C. Materials Testing of 3D Printed ABS and PLA Samples to Guide Mechanical Design; Proceedings of the ASME 2016 International Manufacturing Science and Engineering Conference; Blacksburg, VA, USA. 27 June–1 July 2016.
Wu Y., Yang L. The Effect of Unit Cell Size and Topology on Tensile Failure Behavior of 2D Lattice Structures. Int. J. Mech. Sci. 2019;170:105342. doi: 10.1016/j.ijmecsci.2019.105342. DOI
Xu Y., Zhang H., Šavija B., Figueiredo S.C., Schlangen E. Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Mater. Des. 2019;162:143–153. doi: 10.1016/j.matdes.2018.11.047. DOI
Raghavendra S., Molinari A., Fontanari V., Dallago M., Luchin V., Zappini G., Benedetti M. Tension-compression asymmetric mechanical behavior of lattice cellular structures produced by selective laser melting. J. Mech. Eng. Sci. 2020;234:3241–3256. doi: 10.1177/0954406220912786. DOI
Seiler P.E., Tankasala H.C., Fleck N.A. The role of defects in dictating the strength of brittle honeycombs made by rapid prototyping. Acta Mater. 2019;171:190–200. doi: 10.1016/j.actamat.2019.03.036. DOI
Hasan R., Shamsudin Z., Muslim M.F., Yusof A.M. Study on modulus of ABS single strut and reclaimed carbon fibre; Proceedings of the Mechanical Engineering Research Day 2019; Melaka, Malaysia. 31 July 2019.
Bhate D., Van Soest J., Reeher J., Patel D., Gibson D., Gerbasi J., Finfrock M. A Validated Methodology for Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures Manufactured by Fused Deposition Modeling; Proceedings of the Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2016; Austin, TX, USA. 8–10 August 2016.
Kessler J., Balc N., Gebhardt A. Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings. MATEC Web. Conf. 2017;94:03008. doi: 10.1051/matecconf/20179403008. DOI
Bauer J., Schroer A., Schwaiger R. The Impact of Size and Loading Direction on the Strength of Architected Lattice Materials. Adv. Eng. Mater. 2016;18:1537–1543. doi: 10.1002/adem.201600235. DOI
Monkova K., Vasina M., Zaludek M., Monka P.P., Tkac J. Mechanical Vibration Damping and Compression Properties of a Lattice Structure. Materials. 2021;14:1502. doi: 10.3390/ma14061502. PubMed DOI PMC
Rybachuk M., Alice Mauger C., Fiedler T., Öchsner A. Anisotropic mechanical properties of fused deposition modeled parts fabricated by using Acrylonitrile Butadiene Styrene polymer. J. Polym. Eng. 2017;37:699–706. doi: 10.1515/polyeng-2016-0263. DOI
Azmi M.S., Ismail R., Hasan R., Alkahari M.R. Vibration Analysis of Fused Deposition Modelling Printed Lattice Structure Bar for Application in Automated Device. Int. J. Eng. Technol. 2018;7:21–24. doi: 10.14419/ijet.v7i3.17.16614. DOI
Kessler J., Balc N., Gebhardt A. Basic Research on Lattice Structures Focused on the Tensile Strength. Appl. Mech. Mater. 2015;808:193–198. doi: 10.4028/www.scientific.net/AMM.808.193. DOI
Tahseen A., Mian A. Developing and Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and Horizontal Struts. J. Compos. Sci. 2020;4:74.
Plastics—Determination of Tensile Properties, General Principles. International Organization for Standardization; Geneva, Switzerland: 2012.
Plastics—Determination of Tensile Properties, Test Conditions for Molding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012.
Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy absorption in lattice structures in dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI
Ahmad Y.A.l.-M., Sandeep P.P., Bernd M. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater. Res. Express. 2020;7:122001. doi: 10.1088/2053-1591/abcc5d. DOI
Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI
Carmona S., Molins C. Equivalence Between Flexural Toughness Energy Absorption Capacity of FRC. In: Serna P., Llano-Torre A., Martí-Vargas J.R., Navarro-Gregori J., editors. Fibre Reinforced Concrete: Improvements and Innovations. Volume 30. Springer; Berlin/Heidelberg, Germany: 2021. BEFIB 2020; RILEM Bookseries. DOI
Chen D., Kitipornchai S., Yang J. Dynamic response and energy absorption of functionally graded porous structures. Mater. Des. 2018;140:473–487. doi: 10.1016/j.matdes.2017.12.019. DOI
Yang P., Yue W., Li J., Bin G., Li C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022;140:106570. doi: 10.1016/j.engfailanal.2022.106570. DOI
Gibson L.J., Ashby M.F. Cellular Solids, Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 1999.
Cantrell J.T., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., Young A., Jerez A., Steinbach D., Kroese C., et al. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 2017;23:811–824. doi: 10.1108/RPJ-03-2016-0042. DOI
Muminović A.J., Braut S., Božić Ž., Pervan N., Skoblar. A. Experimental failure analysis of polylactic acid gears made by additive manufacturing. Procedia Struct. Integr. 2023;46:125–130. doi: 10.1016/j.prostr.2023.06.021. DOI
Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI
Liović D., Franulović M., Kozak D. The effect of process parameters on mechanical behavior of selective laser melted Ti6Al4V alloy. Procedia Struct. Integr. 2023;46:42–48. doi: 10.1016/j.prostr.2023.06.008. DOI
Braut S. Fatigue strength analysis of an axial compressor blade using the modified Locati method. Eng. Fail. Anal. 2022;141:106655. doi: 10.1016/j.engfailanal.2022.106655. DOI
Mahshid R., Hansen H.N., Hojbjerre L.K.L.K. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater. Des. 2016;104:276–283. doi: 10.1016/j.matdes.2016.05.020. DOI
Monkova K., Pantazopoulos G., Toulfatzis A., Papadopoulou S., Monka P.P., Vanca J. Tensile fracture analysis of 3D printed Inconel 718. Procedia Struct. Integr. 2023;46:30–34. doi: 10.1016/j.prostr.2023.06.006. DOI
Iyibilgin O., Yigit C. Experimental investigation of different cellular lattice structures manufactured by fused deposition modeling; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 895–907.
Naghieh S., Karamooz Ravari M.R., Badrossamay M., Foroozmehr E., Kadkhodaei M. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 2016;59:241–250. doi: 10.1016/j.jmbbm.2016.01.031. PubMed DOI
Bauer J., Hengsbach S., Tesari I., Schwaiger R., Kraft O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA. 2014;111:2453–2458. doi: 10.1073/pnas.1315147111. PubMed DOI PMC
Lach R., Grellmann W., Han Y., Krüger P. Fracture Mechanics Characterization of ABS Materials—Influence of Morphology and Temperature. Eng. Mater. 2001:317–334. doi: 10.1007/978-3-662-04556-5_22. DOI
Dettenmaier M., Kausch H.-H. New type of crazes in oriented polycarbonate. Polymer. 1980;21:1232–1234. doi: 10.1016/0032-3861(80)90184-6. DOI
Lach R., Grellmann W. Estimation of the resistance against stable crack initiation and unstable crack propagation using R-curves and stability assessment diagrams in ductile polymeric ABS-materials; Proceedings of the 13th European Conference on Fracture (ECF 13); San Sebastian, Spain. 6–9 September 2000; pp. 1–8. CD-ROM Polymer and Composites, No. 20.
Božić Ž., Schmauder S., Wolf H. The effect of residual stresses on fatigue crack propagation in welded stiffened panels. Eng. Fail. Anal. 2018;84:346–357. doi: 10.1016/j.engfailanal.2017.09.001. DOI
Wiest A., MacDougall C.A., Conner R.D. Optimization of cellular solids for energy absorption. Scr. Mater. 2014;84:7–10. doi: 10.1016/j.scriptamat.2014.02.013. DOI
Fang Q., Zhang J., Zhang Y., Liu J., Gong Z. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 2015;124:409–420. doi: 10.1016/j.compstruct.2015.01.001. DOI
Lapčík L., Sepetcioğlu H., Murtaja Y., Lapčíková B., Vašina M., Ovsík M., Staněk M., Gautam S. Study of mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Nanotechnol. Rev. 2023;12:20220520. doi: 10.1515/ntrev-2022-0520. DOI
Pantazopoulos G.A. A Process-Based Approach in Failure Analysis. J Fail. Anal. Prev. 2014;14:551–553. doi: 10.1007/s11668-014-9853-z. DOI