Tensile Properties of Four Types of ABS Lattice Structures-A Comparative Study

. 2023 Oct 15 ; 15 (20) : . [epub] 20231015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37896334

Grantová podpora
APVV-19-0550 Ministry of Education, Science, Research, and Sport of the Slovak Republic
KEGA 005TUKE-4/2021 Ministry of Education, Science, Research, and Sport of the Slovak Republic
KEGA 032TUKE-4/2022 Ministry of Education, Science, Research, and Sport of the Slovak Republic

This article aims to compare the behaviour of four types of lattice structures named Cartesian, Rhomboid, Octagonal, and Starlit under tensile stress loading. The structures were made of Acrylonitrile Butadiene Styrene (ABS) material using the Fused Filament Fabrication (FFF) technique with three different specific volumes (24, 42, and 60%). Five samples of each type were produced, and a total of 60 samples were tested. Experimental testing was performed according to EN ISO 527-1:2012 and EN ISO 527-2:2012. The obtained data were statistically processed, while no outliers were identified. The experimental results pointed out that the specimens' topology, together with the specific volume, very significantly affected the resultant ABS properties of the tested samples made of the same material. The comparative study showed that in terms of ultimate strength, yield strength, and Young's modulus, the Cartesian structure appeared to be the most suitable for tensile stress, and the least suitable structure was the Rhomboid structure. On the other hand, the Rhomboid-type of the structure showed not only the highest amount of absorbed energy but also the highest toughness among the investigated lattice structures, so in the near future, its behaviour under an impact test should be studied.

Zobrazit více v PubMed

Scott J., Gupta N., Weber C., Newsome S., Wohlers T., Caffrey T. Additive Manufacturing: Status and Opportunities. Science and Technology Policy Institute; Washington, DC, USA: 2012.

Sudarmadji N., Tan J.Y., Leong K.F., Chua C.K., Loh Y.T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 2011;7:530–537. doi: 10.1016/j.actbio.2010.09.024. PubMed DOI

Stojadinovic S.M., Majstorovic V.D. Developing engineering ontology for domain coordinate metrology. FME Trans. 2014;42:249–255. doi: 10.5937/fmet1403249s. DOI

Vychytil J., Holeček M. The simple model of cell prestress maintained by cell incompressibility. Math. Comput. Simul. 2010;80:1337–1344. doi: 10.1016/j.matcom.2009.02.005. DOI

Trišović N., Maneski T., Kozak D. Developed procedure for dynamic reanalysis of structures. Strojarstvo. 2010;52:147–158.

Baron P., Dobránsky J., Pollák M., Cmorej T., Kočiško M. Proposal of the Knowledge Application Environment of Calculating Operational Parameters for Conventional Machining Technology. Key Eng. Mater. 2016;669:95–102. doi: 10.4028/www.scientific.net/KEM.669.95. DOI

Messner M.C. Optimal lattice-structured materials. J. Mech. Phys. Solids. 2016;96:162–183. doi: 10.1016/j.jmps.2016.07.010. DOI

Ozcelik B., Ozbay A., Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int. Commun. Heat Mass Transf. 2010;37:1359–1365. doi: 10.1016/j.icheatmasstransfer.2010.07.001. DOI

Jiang B., Wang Z.J., Zhao N.Q. Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 2007;56:169–172. doi: 10.1016/j.scriptamat.2006.08.070. DOI

Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI

Gorguluarslan R.M., Park S.-I., Rosen D.W., Choi S.-K. A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties. J. Mech. Des. 2015;137:111408. doi: 10.1115/1.4031012. DOI

Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI

Jimbo K., Tateno T. Design of isotropic-tensile-strength lattice structure fabricated by AM. J. Soc. Mech. Eng. 2019;85:871. doi: 10.1299/transjsme.18-00098. DOI

Durbaca A.C., Iatan R., Durbaca I., Dinita A., Vasilescu M. Experimental Research on the Triangular Lattice Type Polymer Based Composites Structures for Sandwich Panels Construction. Mater. Plast. 2017;54:639–644. doi: 10.37358/MP.17.4.4916. DOI

Sadali M.F., Hassan M.Z., Ahmad N.H. Modelling of Printed Polylactide Lattice Structure and its Tensile Behaviour; Proceedings of the International Graduate Conference on Engineering, Science and Humanities; Jahor Bahru, Malaysia. 13–15 August 2018.

Plastics—Determination of Tensile Properties. International Organization for Standardization; Geneva, Switzerland: 2019.

An D.S., Kim T.H., Lee E.H. Analytical and Experimental Investigation into the Relative influence of Core and Side Parts on Structures Laminated by Fused Deposition Modeling. Int. J. Precis. Eng. Manuf.-Green Technol. 2020;8:13–27. doi: 10.1007/s40684-019-00177-3. DOI

Farbman D., McCoy C. Materials Testing of 3D Printed ABS and PLA Samples to Guide Mechanical Design; Proceedings of the ASME 2016 International Manufacturing Science and Engineering Conference; Blacksburg, VA, USA. 27 June–1 July 2016.

Wu Y., Yang L. The Effect of Unit Cell Size and Topology on Tensile Failure Behavior of 2D Lattice Structures. Int. J. Mech. Sci. 2019;170:105342. doi: 10.1016/j.ijmecsci.2019.105342. DOI

Xu Y., Zhang H., Šavija B., Figueiredo S.C., Schlangen E. Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Mater. Des. 2019;162:143–153. doi: 10.1016/j.matdes.2018.11.047. DOI

Raghavendra S., Molinari A., Fontanari V., Dallago M., Luchin V., Zappini G., Benedetti M. Tension-compression asymmetric mechanical behavior of lattice cellular structures produced by selective laser melting. J. Mech. Eng. Sci. 2020;234:3241–3256. doi: 10.1177/0954406220912786. DOI

Seiler P.E., Tankasala H.C., Fleck N.A. The role of defects in dictating the strength of brittle honeycombs made by rapid prototyping. Acta Mater. 2019;171:190–200. doi: 10.1016/j.actamat.2019.03.036. DOI

Hasan R., Shamsudin Z., Muslim M.F., Yusof A.M. Study on modulus of ABS single strut and reclaimed carbon fibre; Proceedings of the Mechanical Engineering Research Day 2019; Melaka, Malaysia. 31 July 2019.

Bhate D., Van Soest J., Reeher J., Patel D., Gibson D., Gerbasi J., Finfrock M. A Validated Methodology for Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures Manufactured by Fused Deposition Modeling; Proceedings of the Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2016; Austin, TX, USA. 8–10 August 2016.

Kessler J., Balc N., Gebhardt A. Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings. MATEC Web. Conf. 2017;94:03008. doi: 10.1051/matecconf/20179403008. DOI

Bauer J., Schroer A., Schwaiger R. The Impact of Size and Loading Direction on the Strength of Architected Lattice Materials. Adv. Eng. Mater. 2016;18:1537–1543. doi: 10.1002/adem.201600235. DOI

Monkova K., Vasina M., Zaludek M., Monka P.P., Tkac J. Mechanical Vibration Damping and Compression Properties of a Lattice Structure. Materials. 2021;14:1502. doi: 10.3390/ma14061502. PubMed DOI PMC

Rybachuk M., Alice Mauger C., Fiedler T., Öchsner A. Anisotropic mechanical properties of fused deposition modeled parts fabricated by using Acrylonitrile Butadiene Styrene polymer. J. Polym. Eng. 2017;37:699–706. doi: 10.1515/polyeng-2016-0263. DOI

Azmi M.S., Ismail R., Hasan R., Alkahari M.R. Vibration Analysis of Fused Deposition Modelling Printed Lattice Structure Bar for Application in Automated Device. Int. J. Eng. Technol. 2018;7:21–24. doi: 10.14419/ijet.v7i3.17.16614. DOI

Kessler J., Balc N., Gebhardt A. Basic Research on Lattice Structures Focused on the Tensile Strength. Appl. Mech. Mater. 2015;808:193–198. doi: 10.4028/www.scientific.net/AMM.808.193. DOI

Tahseen A., Mian A. Developing and Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and Horizontal Struts. J. Compos. Sci. 2020;4:74.

Plastics—Determination of Tensile Properties, General Principles. International Organization for Standardization; Geneva, Switzerland: 2012.

Plastics—Determination of Tensile Properties, Test Conditions for Molding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012.

Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy absorption in lattice structures in dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI

Ahmad Y.A.l.-M., Sandeep P.P., Bernd M. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater. Res. Express. 2020;7:122001. doi: 10.1088/2053-1591/abcc5d. DOI

Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI

Carmona S., Molins C. Equivalence Between Flexural Toughness Energy Absorption Capacity of FRC. In: Serna P., Llano-Torre A., Martí-Vargas J.R., Navarro-Gregori J., editors. Fibre Reinforced Concrete: Improvements and Innovations. Volume 30. Springer; Berlin/Heidelberg, Germany: 2021. BEFIB 2020; RILEM Bookseries. DOI

Chen D., Kitipornchai S., Yang J. Dynamic response and energy absorption of functionally graded porous structures. Mater. Des. 2018;140:473–487. doi: 10.1016/j.matdes.2017.12.019. DOI

Yang P., Yue W., Li J., Bin G., Li C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022;140:106570. doi: 10.1016/j.engfailanal.2022.106570. DOI

Gibson L.J., Ashby M.F. Cellular Solids, Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 1999.

Cantrell J.T., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., Young A., Jerez A., Steinbach D., Kroese C., et al. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 2017;23:811–824. doi: 10.1108/RPJ-03-2016-0042. DOI

Muminović A.J., Braut S., Božić Ž., Pervan N., Skoblar. A. Experimental failure analysis of polylactic acid gears made by additive manufacturing. Procedia Struct. Integr. 2023;46:125–130. doi: 10.1016/j.prostr.2023.06.021. DOI

Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Liović D., Franulović M., Kozak D. The effect of process parameters on mechanical behavior of selective laser melted Ti6Al4V alloy. Procedia Struct. Integr. 2023;46:42–48. doi: 10.1016/j.prostr.2023.06.008. DOI

Braut S. Fatigue strength analysis of an axial compressor blade using the modified Locati method. Eng. Fail. Anal. 2022;141:106655. doi: 10.1016/j.engfailanal.2022.106655. DOI

Mahshid R., Hansen H.N., Hojbjerre L.K.L.K. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater. Des. 2016;104:276–283. doi: 10.1016/j.matdes.2016.05.020. DOI

Monkova K., Pantazopoulos G., Toulfatzis A., Papadopoulou S., Monka P.P., Vanca J. Tensile fracture analysis of 3D printed Inconel 718. Procedia Struct. Integr. 2023;46:30–34. doi: 10.1016/j.prostr.2023.06.006. DOI

Iyibilgin O., Yigit C. Experimental investigation of different cellular lattice structures manufactured by fused deposition modeling; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 895–907.

Naghieh S., Karamooz Ravari M.R., Badrossamay M., Foroozmehr E., Kadkhodaei M. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 2016;59:241–250. doi: 10.1016/j.jmbbm.2016.01.031. PubMed DOI

Bauer J., Hengsbach S., Tesari I., Schwaiger R., Kraft O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA. 2014;111:2453–2458. doi: 10.1073/pnas.1315147111. PubMed DOI PMC

Lach R., Grellmann W., Han Y., Krüger P. Fracture Mechanics Characterization of ABS Materials—Influence of Morphology and Temperature. Eng. Mater. 2001:317–334. doi: 10.1007/978-3-662-04556-5_22. DOI

Dettenmaier M., Kausch H.-H. New type of crazes in oriented polycarbonate. Polymer. 1980;21:1232–1234. doi: 10.1016/0032-3861(80)90184-6. DOI

Lach R., Grellmann W. Estimation of the resistance against stable crack initiation and unstable crack propagation using R-curves and stability assessment diagrams in ductile polymeric ABS-materials; Proceedings of the 13th European Conference on Fracture (ECF 13); San Sebastian, Spain. 6–9 September 2000; pp. 1–8. CD-ROM Polymer and Composites, No. 20.

Božić Ž., Schmauder S., Wolf H. The effect of residual stresses on fatigue crack propagation in welded stiffened panels. Eng. Fail. Anal. 2018;84:346–357. doi: 10.1016/j.engfailanal.2017.09.001. DOI

Wiest A., MacDougall C.A., Conner R.D. Optimization of cellular solids for energy absorption. Scr. Mater. 2014;84:7–10. doi: 10.1016/j.scriptamat.2014.02.013. DOI

Fang Q., Zhang J., Zhang Y., Liu J., Gong Z. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 2015;124:409–420. doi: 10.1016/j.compstruct.2015.01.001. DOI

Lapčík L., Sepetcioğlu H., Murtaja Y., Lapčíková B., Vašina M., Ovsík M., Staněk M., Gautam S. Study of mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Nanotechnol. Rev. 2023;12:20220520. doi: 10.1515/ntrev-2022-0520. DOI

Pantazopoulos G.A. A Process-Based Approach in Failure Analysis. J Fail. Anal. Prev. 2014;14:551–553. doi: 10.1007/s11668-014-9853-z. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...