Comparison of the Bending Behavior of Cylindrically Shaped Lattice Specimens with Radially and Orthogonally Arranged Cells Made of ABS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0550
The Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 005TUKE-4/2021
The Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 032TUKE-4/2022
The Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
38611237
PubMed Central
PMC11013487
DOI
10.3390/polym16070979
PII: polym16070979
Knihovny.cz E-zdroje
- Klíčová slova
- ABS plastics, bending behavior, cell arrangement, ductility index, lattice structure,
- Publikační typ
- časopisecké články MeSH
The article deals with the comparison of the bending behavior of cylindrical lattice samples with radially and orthogonally arranged cells made of ABS material. The structures were designed in PTC Creo Parametric 8 software, while four types of lattice structures were evaluated: Rhombus, Cuboidal BCC, Octagon, and Starry, in three material volume fractions: 44, 57, and 70%, together with tubular and rod-shaped samples. The Fused Filament Fabrication (FFF) technique was chosen for the production of ABS plastic samples. Based on the bending tests, the dependences of the force on the deflection were recorded and the obtained data were statistically processed to identify outliers using the Grubbs test. The maximum stresses were calculated and the dependences of the stresses on the volume fractions were plotted. Along with energy absorption, ductility indices were also specified. Although the Rhombus structure appears to be the best based on the ductility indices obtained, on the other hand, the structure showed the lowest values of bending stresses (in the range from 10.6 to 12.6 MPa for volume fractions ranging from 44 to 70%, respectively). Therefore, from a synergic point of view of both factors, stress and ductility, the Starry structure exhibits the best flexural properties among those investigated.
Zobrazit více v PubMed
Kumar Mishra A., Kumar A. Performance of asymmetric octet lattice structures under compressive and bending loads. Eng. Fail. Anal. 2023;154:107669. doi: 10.1016/j.engfailanal.2023.107669. DOI
Liu Y. Mechanical properties of a new type of plate–lattice structures. Int. J. Mech. Sci. 2020;192:106141. doi: 10.1016/j.ijmecsci.2020.106141. DOI
Mahbod M., Asgari M. Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models. Int. J. Mech. Sci. 2019;155:248–266. doi: 10.1016/j.ijmecsci.2019.02.041. DOI
Günaydın K., Sala G., Türkmen H.S., Grande A.M. Failure analysis of auxetic lattice structures under crush load. Procedia Struct. Integr. 2022;35:237–246. doi: 10.1016/j.prostr.2021.12.070. DOI
Raghavendra S., Molinari A., Fontanari V., Luchin V., Zappini G., Benedetti M. Effect of Porosity and Cell Topology on Elastic-Plastic Behavior of Cellular Structures. Procedia Struct. Integr. 2019;18:93–100. doi: 10.1016/j.prostr.2019.08.143. DOI
Zhang C., Nie G., Dai J., Zhi X. Experimental studies of the seismic behavior of double-layer lattice space structures I: Experimental verification. Eng. Fail. Anal. 2016;64:85–96. doi: 10.1016/j.engfailanal.2016.03.002. DOI
Della Ripa M., Paolino D.S., Amorese A., Tridello A. Numerical modelling of the mechanical response of lattice structures produced through AM. Procedia Struct. Integr. 2021;33:714–723. doi: 10.1016/j.prostr.2021.10.079. DOI
Baranowski P., Płatek P., Antolak-Dudka A., Sarzyński M., Kucewicz M., Durejko T., Małachowski J., Janiszewski J., Czujko T. Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation. Addit. Manuf. 2019;25:307–316. doi: 10.1016/j.addma.2018.11.018. DOI
Benedetti M., du Plessis A., Ritchie R.O., Dallago M., Razavi N., Berto F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021;144:100606. doi: 10.1016/j.mser.2021.100606. DOI
Monkova K., Monka P.P., Hricová R., Hausnerova B., Knapčíková L. Tensile Properties of Four Types of ABS Lattice Structures—A Comparative Study. Polymers. 2023;15:4090. doi: 10.3390/polym15204090. PubMed DOI PMC
Li Y., Pavier M., Coules H. Fracture behaviour of octet-truss lattices in different orientations. Procedia Struct. Integr. 2022;37:49–56. doi: 10.1016/j.prostr.2022.01.058. DOI
Vazdirvanidis A., Bouzouni M., Pantazopoulos G. Failure and Fracture analysis of a high-alloy Ni-Al bronze chain connector of a tube drawing machine. Eng. Fail. Anal. 2020;110:104432. doi: 10.1016/j.engfailanal.2020.104432. DOI
Monkova K., Vasina M., Zaludek M., Monka P.P., Tkac J. Mechanical Vibration Damping and Compression Properties of a Lattice Structure. Materials. 2021;14:1502. doi: 10.3390/ma14061502. PubMed DOI PMC
Jiang H., Ziegler H., Zhang Z., Atre S., Chen Y. Bending behavior of 3D printed mechanically robust tubular lattice metamaterials. Addit. Manuf. 2022;50:102565. doi: 10.1016/j.addma.2021.102565. DOI
Liu Z., Chen H., Xing S. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load. Arch. Civ. Mech. Eng. 2020;20:89. doi: 10.1007/s43452-020-00095-1. DOI
Gullapalli H., Masood S.H., Riza S., Ponnusamy P. Flexural Behaviour of 2D Cellular Lattice Structures Manufactured by Fused Deposition Modelling. Springer; Singapore: 2020. pp. 109–117. Lecture Notes on Multidisciplinary Industrial Engineering.
Catana D., Pop M.-A., Brus D.-I. Comparison between the Test and Simulation Results for PLA Structures 3D Printed, Bending Stressed. Molecules. 2021;26:3325. doi: 10.3390/molecules26113325. PubMed DOI PMC
Eryildiz M. Experimental investigation and simulation of 3D printed sandwich structures with novel core topologies under bending loads. Int. Polym. Process. 2023;38:277–289. doi: 10.1515/ipp-2022-4311. DOI
Pirouzfar S., Zeinedini A. Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. Structures. 2021;33:2724–2738. doi: 10.1016/j.istruc.2021.06.033. DOI
Öteyaka M.Ö., Çakir F.H., Sofuoğlu M.A. Effect of infill pattern and ratio on the flexural and vibration damping characteristics of FDM printed PLA specimens. Mater. Today Commun. 2022;33:104912. doi: 10.1016/j.mtcomm.2022.104912. DOI
Fongsamootr T., Suttakul P., Tippayawong N., Nanakorn P., Cappellini C. Bending behavior of 2D periodic plates with different unit cells: Numerical and experimental investigations. Mater. Today Commun. 2022;31:103774. doi: 10.1016/j.mtcomm.2022.103774. DOI
Pantazopoulos G.A. Failure Mechanisms in Alloys. Metals. 2020;10:117. doi: 10.3390/met10010117. DOI
Bellini C., Borrelli R., Di Caprio F., Di Cocco V., Franchitti S., Iacoviello F., Mocanu L.P., Sorrentino L. Manufacturing process effect on the bending characteristics of titanium-lattice/FRP hybrid structures. Procedia Struct. Integr. 2022;42:196–201. doi: 10.1016/j.prostr.2022.12.024. DOI
Le C., Kolasangiani K., Nayyeri P., Bougherara H. Experimental and numerical investigation of 3D-Printed bone plates under four-point bending load utilizing machine learning techniques. J. Mech. Behav. Biomed. Mater. 2023;143:105885. doi: 10.1016/j.jmbbm.2023.105885. PubMed DOI
Lampropoulos A.D., Markopoulos A.P., Manolakos D.E. Modeling of Ti6Al4V alloy orthogonal cutting with smooth particle hydrodynamics: A parametric analysis on formulation and particle density. Metals. 2019;9:388. doi: 10.3390/met9040388. DOI
Grbović A., Kastratović G., Božić Ž., Božić I., Obradović A., Sedmak A., Sedmak S. Experimental and numerical evaluation of fracture characteristics of composite material used in the aircraft engine cover manufacturing. Eng. Fail. Anal. 2022;137:106286. doi: 10.1016/j.engfailanal.2022.106286. DOI
Mushtaq R.T., Wang Y., Bao C., Chen X., Anwar S., Sharma S., Khan A.M., Sharma K., Bisht Y.S., Abbas M., et al. Multi-objective optimization of laser polishing parameters for enhanced mechanical properties, sustainability, and surface finish of 3D-Printed industrial ABS polymers using response surface methodology (RSM) J. Mater. Res. Technol. 2024;29:3168–3184. doi: 10.1016/j.jmrt.2024.02.023. DOI
Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI
Kessler J., Balc N., Gebhardt A. Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings. MATEC Web. Conf. 2017;94:03008. doi: 10.1051/matecconf/20179403008. DOI
Vanca J. Ph.D. Thesis. Technical University of Kosice, Faculty of Manufacturing Technologies with a seat in Presov; Presov, Slovakia: 2019. Research of Properties of Complex Cell Structures Produced by Additive Technology.
Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI
Frank L., Weihe S. Component tests and numerical investigations to determine the lifetime and failure behavior of end stage blades. Procedia Struct. Integr. 2023;46:3–9. doi: 10.1016/j.prostr.2023.06.002. DOI
Hric S. Ph.D. Thesis. Technical University of Kosice, Faculty of Manufacturing Technologies with a seat in Presov; Presov, Slovakia: 2019. Research of Possibilities Application of Components of Technical Systems Made by Additive Technology.
Determination of Tensile Properties. ISO; Geneva, Switzerland: 2012.
Technical Datasheet White EasyABS, Prusa Polymers by Josef Prusa. Prusa Research, a. s.; Prague, Czech Republic: 2023.
Plastics Determination of Flexural Properties. ISO; Geneva, Switzerland: 2019.
Kožar I., Bede N., Mrakovčić S., Božić Ž. Verification of a fracture model for fiber reinforced concrete beams in bending. Eng. Fail. Anal. 2022;138:106378. doi: 10.1016/j.engfailanal.2022.106378. DOI
Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI
Kahraman M.F., İriç S., Genel K. Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study. Eng. Fail. Anal. 2024;157:107963. doi: 10.1016/j.engfailanal.2024.107963. DOI
Dell’ Isola F., Ruta G.C. Generalizing Jouravski Formulas by Techniques from Differential Geometry. Math. Mech. Solids. 1997;2:307–319. doi: 10.1177/108128659700200305. DOI
Arowojolu O., Ibrahim A., Almakrab A., Saras N., Nielsen R. Influence of Shear Span-to-Effective Depth Ratio on Behavior of High-Strength Reinforced Concrete Beams. Int. J. Concr. Struct. Mater. 2021;15:14. doi: 10.1186/s40069-020-00444-7. DOI
Sudheer R.L., Ramana R.N.V., Gunneswara R.T.D. Shear resistance of high strength concrete beams without shear reinforcement. Int. J. Civ. Struct. Eng. 2010;1:101–113.
Huber T., Huber P., Kollegger J. Influence of aggregate interlock on the shear resistance of reinforced concrete beams without stirrups. Eng. Struct. 2019;186:26–42. doi: 10.1016/j.engstruct.2019.01.074. DOI
Hu B., Wu Y.F. Effect of shear span-to-depth ratio on shear strength components of RC beams. Eng. Struct. 2018;168:770–783. doi: 10.1016/j.engstruct.2018.05.017. DOI
Kožar I., Sulovsky T., Plovanić M., Božić Ž. Verification of a displacement model for three-point bending test. Procedia Struct. Integr. 2023;46:143–148. doi: 10.1016/j.prostr.2023.06.024. DOI
Li J., Cui Y., Xiong D., Lu Z., Dong X., Zhang H., Cui F., Zhou T. Experimental Study on the Bending Resistance of Hollow Slab Beams Strengthened with Prestressed Steel Strand Polyurethane Cement Composite. Coatings. 2023;13:458. doi: 10.3390/coatings13020458. DOI
Tong K., Zhou J., Zhou S., Zhang Y., Chen R., Li S., Zhao R. Investigation of the relationship between bending capacity and SMFL intensity of existing reinforced concrete hollow slab beams. Measurement. 2024;228:114331. doi: 10.1016/j.measurement.2024.114331. DOI
Haedir J., Bambach M.R., Zhao X.-L., Grzebieta R.H. Strength of circular hollow sections (CHS) tubular beams externally reinforced by carbon FRP sheets in pure bending. Thin-Walled Struct. 2009;47:1136–1147. doi: 10.1016/j.tws.2008.10.017. DOI
Daud S.A., Daud R.A., Al-Azzawi A.A. Behavior of reinforced concrete solid and hollow beams that have additional reinforcement in the constant moment zone. Ain Shams Eng. J. 2020;12:31–36. doi: 10.1016/j.asej.2020.07.017. DOI
Vanca J., Monkova K., Žaludek M., Monka P.P., Koroľ M., Kozak D., Beno P., Ferroudji F. Investigation of the Influence of Orientation on the Tensile Properties of 3D Printed Samples with Gyroid Structure; Proceedings of the 13th International Conference on Mechanical and Aerospace Engineering; Bratislava, Slovakia. 20–22 July 2022; New York, NY, USA: Institute of Electrical and Electronics Engineers; 2022. pp. 526–531.
Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI
Campagnolo A., Berto F., Leguillon D. Mode II loading in sharp V-notched components: A comparison among some recent criteria for brittle fracture assessment. Procedia Struct. Integr. 2016;2:1845–1852. doi: 10.1016/j.prostr.2016.06.232. DOI
Marsavina L., Negru R., Serban D., Marghitas M., Popa C. The notch effect on additive manufactured polymers. Procedia Struct. Integr. 2023;47:744–748. doi: 10.1016/j.prostr.2023.07.045. DOI
Arrieta S., Cicero S., Sánchez M., Castanon-Jano L. Estimation of fracture loads in 3D printed PLA notched specimens using the ASED criterion. Procedia Struct. Integr. 2023;47:13–21. doi: 10.1016/j.prostr.2023.06.036. DOI
Subhani M., Globa A., Al-Ameri R., Moloney J. Flexural strengthening of LVL beam using CFRP. Constr. Build. Mater. 2017;150:480–489. doi: 10.1016/j.conbuildmat.2017.06.027. DOI
Nabavi-Kivi A., Ayatollahi M.R., Schmauder S., Khosravani M.R. Fracture analysis of a 3D-printed ABS specimen: Effects of raster angle and layer orientation. Fiz. Mezomekhanika. 2022;25:26–39. doi: 10.55652/1683-805X_2022_25_5_26. DOI
Birro T.V., Aufray M., Paroissien E., Lachaud F. Assessment of interface failure behaviour for brittle adhesive using the three-point bending test. Int. J. Adhes. Adhes. 2021;110:102891. doi: 10.1016/j.ijadhadh.2021.102891. DOI
Roche A., Behme A., Solomon J. A three-point flexure test configuration for improved sensitivity to metal/adhesive interfacial phenomena. Int. J. Adhes. Adhes. 1982;2:249–254. doi: 10.1016/0143-7496(82)90032-X. DOI
Kim T.-K., Park J.-S. Evaluation of the Performance and Ductility Index of Concrete Structures Using Advanced Composite Material Strengthening Methods. Polymers. 2021;13:4239. doi: 10.3390/polym13234239. PubMed DOI PMC