Researching on the Effect of Input Parameters on the Quality and Manufacturability of 3D-Printed Cellular Samples from Nylon 12 CF in Synergy with Testing Their Behavior in Bending

. 2024 May 17 ; 16 (10) : . [epub] 20240517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38794622

Grantová podpora
APVV-19-0550 The Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 032TUKE-4/2022 The Ministry of Education, Science, Research and Sport of the Slovak Republic
ERASMUS+ 2021-1-PL01-KA220-HED-000031182 Erasmus+ EU programme for education, training, youth and sport

The study of cellular structures and their properties represents big potential for their future applications in real practice. The article aims to study the effect of input parameters on the quality and manufacturability of cellular samples 3D-printed from Nylon 12 CF in synergy with testing their bending behavior. Three types of structures (Schwarz Diamond, Shoen Gyroid, and Schwarz Primitive) were selected for investigation that were made via the fused deposition modeling technique. As part of the research focused on the settings of input parameters in terms of the quality and manufacturability of the samples, input parameters such as volume fraction, temperature of the working space, filament feeding method and positioning of the sample on the printing pad were specified for the combination of the used material and 3D printer. During the experimental investigation of the bending properties of the samples, a three-point bending test was performed. The dependences of force on deflection were mathematically described and the amount of absorbed energy and ductility were evaluated. The results show that among the investigated structures, the Schwarz Diamond structure appears to be the most suitable for bending stress applications.

Zobrazit více v PubMed

Benedetti M., du Plessis A., Ritchie R.O., Dallago M., Razavi N., Berto F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021;144:100606. doi: 10.1016/j.mser.2021.100606. DOI

Muminovic A.J. Failure analysis of nylon gears made by additive manufacturing. Eng. Fail. Anal. 2022;137:106272. doi: 10.1016/j.engfailanal.2022.106272. DOI

Grbović A., Kastratović G., Božić Ž., Božić I., Obradović A., Sedmak A., Sedmak S. Experimental and numerical evaluation of fracture characteristics of composite material used in the aircraft engine cover manufacturing. Eng. Fail. Anal. 2022;137:106286. doi: 10.1016/j.engfailanal.2022.106286. DOI

Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Ana-lysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI

Stamoulis K., Panagiotopoulos D., Pantazopoulos G., Papaefthymiou S. Failure analysis of an aluminum extrusion aircraft wing component. Int. J. Struct. Integr. 2016;7:748–761. doi: 10.1108/IJSI-10-2015-0050. DOI

Munsch M. Laser additive manufacturing of customized prosthetics and implants for biomedical applications. In: Brandt M., editor. Laser Additive Manufacturing. Elsevier; Amsterdam, The Netherlands: 2017. pp. 399–420.

Yang J., Gu D., Lin K., Wu L., Zhang H., Guo M., Yuan L. Laser additive manufacturing of cellular structure with enhanced com-pressive performance inspired by Al–Si crystalline microstructure. CIRP J. Manuf. Sci. Technol. 2021;32:26–36. doi: 10.1016/j.cirpj.2020.11.003. DOI

Nazir A., Abate K.M., Kumar A., Jeng J.-Y. A state-of-the-art review on types, design, optimization, and additive manufactu-ring of cellular structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI

Nemes-Károly I., Szebényi G. Reliable Methods for Classification, Characterization, and Design of Cellular Structures for Patient-Specific Implants. Materials. 2023;16:4146. doi: 10.3390/ma16114146. PubMed DOI PMC

Ghanbari-Ghazijahani T., Kasebahadi M., Hassanli R., Classen M. 3D printed honeycomb cellular beams made of composite materials (plastic and timber) Constr. Build. Mater. 2022;315:125541. doi: 10.1016/j.conbuildmat.2021.125541. DOI

Calignano F., Lorusso M., Roppolo I., Minetola P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines. 2020;8:52. doi: 10.3390/machines8030052. DOI

Nguyen-Van V., Choudhry N.K., Panda B., Nguyen-Xuan H., Tran P. Performance of concrete beam reinforced with 3D printed Bioinspired primitive scaffold subjected to three-point bending. Autom. Constr. 2022;134:104060. doi: 10.1016/j.autcon.2021.104060. DOI

Ormiston S., Srinivas Sundarram S. Fiberglass-reinforced triply periodic minimal surfaces (TPMS) lattice structures for ener-gy absorption applications. Polym. Compos. 2023;45:523–534. doi: 10.1002/pc.27795. DOI

Alarifi I.M. A performance evaluation study of 3d printed nylon/glass fiber and nylon/carbon fiber composite materials. J. Mater. Res. Technol. 2022;21:884–892. doi: 10.1016/j.jmrt.2022.09.085. DOI

Cui Z., Huang X., Jia M., Panahi-Sarmad M., Hossen I., Dong K., Xiao X. 3D printing of continuous fiber reinforced cellular structural composites for the study of bending performance. J. Reinf. Plast. Compos. 2023;42:673–684. doi: 10.1177/07316844221137017. DOI

Myers D., Abdel-Wahab A., Hafeez F., Kovacev N., Essa K. Optimisation of the additive manufacturing parameters of poly-lactic acid (PLA) cellular structures for biomedical applications. J. Mech. Behav. Biomed. Mater. 2022;136:105447. doi: 10.1016/j.jmbbm.2022.105447. PubMed DOI

Tao Y., Pan L., Liu D., Li P. A case study: Mechanical modeling optimization of cellular structure fabricated using wood flour-filled polylactic acid composites with fused deposition modeling. Compos. Struct. 2019;216:360–365. doi: 10.1016/j.compstruct.2019.03.010. DOI

Zhang Y., Liu B., Peng F., Jia H., Zhao Z., Duan S., Wang P., Lei H. Adaptive enhancement design of triply periodic minimal surface lattice structure based on non-uniform stress distribution. Appl. Math. Mech. 2023;44:1317–1330. doi: 10.1007/s10483-023-3013-9. DOI

Zhu J., Zou S., Mu Y., Wang J., Jin Y. Additively Manufactured Scaffolds with Optimized Thickness Based on Triply Periodic Minimal Surface. Materials. 2022;15:7084. doi: 10.3390/ma15207084. PubMed DOI PMC

Yu S., Sun J., Bai J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. 2019;182:108021. doi: 10.1016/j.matdes.2019.108021. DOI

Abueidda D.W., Elhebeary M., Shiang C.-S., Pang S., Abu Al-Rub R.K., Jasiuk I.M. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater. Des. 2019;165:107597. doi: 10.1016/j.matdes.2019.107597. DOI

Han L., Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv. Mater. 2018;30:e1705708. doi: 10.1002/adma.201705708. PubMed DOI

Callens S.J.P., Tümer N., Zadpoor A.A. Hyperbolic origami-inspired folding of triply periodic minimal surface structures. Appl. Mater. Today. 2019;15:453–461. doi: 10.1016/j.apmt.2019.03.007. DOI

Awd M., Saeed M., Walther F. A review on the enhancement of failure mechanisms modeling in additively manufactured structures by machine learning. Eng. Fail. Anal. 2023;151:107403. doi: 10.1016/j.engfailanal.2023.107403. DOI

Hassan I.M., Enab T.A., Fouda N., Eldesouky I. The mechanical performance of functionally graded Schwarz primitive and Schoen-IWP cellular structures fabricated by additive manufacturing. Prog. Addit. Manuf. 2023;8:303–311. doi: 10.1007/s40964-022-00333-3. DOI

Mishra A.M., Kumar A. Performance of asymmetric octet lattice structures under compressive and bending loads. Eng. Fail. Anal. 2023;154:107669. doi: 10.1016/j.engfailanal.2023.107669. DOI

Guo X., Ding J., Li X., Qu S., Song X., Fuh J.Y.H., Lu W.F., Zhai W. Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design. Int. J. Mech. Sci. 2022;216:106977. doi: 10.1016/j.ijmecsci.2021.106977. DOI

Kladovasilakis N., Tsongas K., Tzetzis D. Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply Periodic Minimal Surface Structures. J. Compos. Sci. 2021;5:58. doi: 10.3390/jcs5020058. DOI

Restrepo S., Ocampo S., Ramírez J.A., Paucar C., García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J. Phys. Conf. Ser. 2017;935:012036. doi: 10.1088/1742-6596/935/1/012036. DOI

Downing D., Jones A., Brandt M., Leary M. Increased efficiency gyroid structures by tailored material distribution. Mater. Des. 2021;197:109096. doi: 10.1016/j.matdes.2020.109096. DOI

Papadopoulou S., Vazdirvanidis A., Toulfatzis A., Rikos A., Pantazopoulos G. Failure Investigation of Products and Components in Metal Forming Industry: Root Cause Analysis and Process-Based Approach. J Fail. Anal. and Preven. 2020;20:106–114. doi: 10.1007/s11668-020-00801-4. DOI

Korol’ M., Török J., Goryl K., Vodilka A. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2024. Research of Selected TPMS Structures Made of ABS and Nylon 12 CF Material Using the FDM, Advances in Manufacturing IV. DOI

Monkova K., Monka P.P., Vodilka A. Comparison of the Bending Behavior of Cylindrically Shaped Lattice Specimens with Radially and Orthogonally Arranged Cells Made of ABS. Polymers. 2024;16:979. doi: 10.3390/polym16070979. PubMed DOI PMC

Plastics Determination of Flexural Properties. ISO; Geneva, Switzerland: 2019.

Rodríguez-Reyna S., Díaz-Aguilera J., Acevedo-Parra H., García C.J., Gutierrez-Castañeda E.J., Tapia F. Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads. J. Mech. Behav. Biomed. Mater. 2024;150:106257. doi: 10.1016/j.jmbbm.2023.106257. PubMed DOI

Vidakis N., Petousis M., Velidakis E., Tzounis L., Mountakis N., Boura O., A Grammatikos S. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Adv. Compos. Mater. 2022;31:630–654. doi: 10.1080/09243046.2022.2076019. DOI

Kahraman M.F., İriç S., Genel K. Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study. Eng. Fail. Anal. 2024;157:107963. doi: 10.1016/j.engfailanal.2024.107963. DOI

Vanca J., Monkova K., Žaludek M., Monka P.P., Koroľ M., Kozak D., Beno P., Ferroudji F. Investigation of the Influence of Orientation on the Tensile Pro-perties of 3D Printed Samples with Gyroid Structure; Proceedings of the 13th International Conference on Mechanical and Aerospace Engineering; Bratislava, Slovakia. 20–22 July 2022; New York, NY, USA: Institute of Electrical and Electronics Engineers; 2022. pp. 526–531.

Dazon C., Witschger O., Llewellyn P.L. Performance of the halogen technology for determining the moisture content of nanoparticulate powders. Exp. Tech. 2019;43:757–764. doi: 10.1007/s40799-019-00332-0. DOI

Seyedzavvar M., Boğa C., Zehir B. Experimental study and hybrid optimization of material extrusion process parameters for enhancement of fracture resistance of biodegradable nanocomposites. Eng. Fail. Anal. 2023;150:107294. doi: 10.1016/j.engfailanal.2023.107294. DOI

Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2022.

Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PP50069-2022. National Patent. 2022 December 20;

Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PCT/SK2023/050030. International Patent. 2023 October 15;

Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PUV50104-2022. Utility model. 2022 December 20;

Valvez S., Reis P.N.B., Ferreira J.A.M. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J. Mater. Res. Technol. 2023;23:2101–2115. doi: 10.1016/j.jmrt.2023.01.097. DOI

Kožar I., Sulovsky T., Plovanić M., Božić Ž. Verification of a displacement model for three-point bending test. Procedia Struct. Integr. 2023;46:143–148. doi: 10.1016/j.prostr.2023.06.024. DOI

Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI

Subhani M., Globa A., Al-Ameri R., Moloney J. Flexural strengthening of LVL beam using CFRP. Constr. Build. Mater. 2017;150:480–489. doi: 10.1016/j.conbuildmat.2017.06.027. DOI

Nabavi-Kivi A., Ayatollahi M.R., Schmauder S., Khosravani M.R. Fracture analysis of a 3D-printed ABS specimen: Effects of raster angle and layer orientation. Fiz. Mezomekhanika. 2022;25:26–39. doi: 10.55652/1683-805X_2022_25_5_26. DOI

Kim T.-K., Park J.-S. Evaluation of the Performance and Ductility Index of Concrete Structures Using Advanced Composite Material Strengthening Methods. Polymers. 2021;13:4239. doi: 10.3390/polym13234239. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...