Researching on the Effect of Input Parameters on the Quality and Manufacturability of 3D-Printed Cellular Samples from Nylon 12 CF in Synergy with Testing Their Behavior in Bending
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-19-0550
The Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 032TUKE-4/2022
The Ministry of Education, Science, Research and Sport of the Slovak Republic
ERASMUS+ 2021-1-PL01-KA220-HED-000031182
Erasmus+ EU programme for education, training, youth and sport
PubMed
38794622
PubMed Central
PMC11126079
DOI
10.3390/polym16101429
PII: polym16101429
Knihovny.cz E-resources
- Keywords
- Nylon 12 CF, additive technology, bending, cellular structures, input parameters,
- Publication type
- Journal Article MeSH
The study of cellular structures and their properties represents big potential for their future applications in real practice. The article aims to study the effect of input parameters on the quality and manufacturability of cellular samples 3D-printed from Nylon 12 CF in synergy with testing their bending behavior. Three types of structures (Schwarz Diamond, Shoen Gyroid, and Schwarz Primitive) were selected for investigation that were made via the fused deposition modeling technique. As part of the research focused on the settings of input parameters in terms of the quality and manufacturability of the samples, input parameters such as volume fraction, temperature of the working space, filament feeding method and positioning of the sample on the printing pad were specified for the combination of the used material and 3D printer. During the experimental investigation of the bending properties of the samples, a three-point bending test was performed. The dependences of force on deflection were mathematically described and the amount of absorbed energy and ductility were evaluated. The results show that among the investigated structures, the Schwarz Diamond structure appears to be the most suitable for bending stress applications.
See more in PubMed
Benedetti M., du Plessis A., Ritchie R.O., Dallago M., Razavi N., Berto F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021;144:100606. doi: 10.1016/j.mser.2021.100606. DOI
Muminovic A.J. Failure analysis of nylon gears made by additive manufacturing. Eng. Fail. Anal. 2022;137:106272. doi: 10.1016/j.engfailanal.2022.106272. DOI
Grbović A., Kastratović G., Božić Ž., Božić I., Obradović A., Sedmak A., Sedmak S. Experimental and numerical evaluation of fracture characteristics of composite material used in the aircraft engine cover manufacturing. Eng. Fail. Anal. 2022;137:106286. doi: 10.1016/j.engfailanal.2022.106286. DOI
Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Ana-lysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI
Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI
Stamoulis K., Panagiotopoulos D., Pantazopoulos G., Papaefthymiou S. Failure analysis of an aluminum extrusion aircraft wing component. Int. J. Struct. Integr. 2016;7:748–761. doi: 10.1108/IJSI-10-2015-0050. DOI
Munsch M. Laser additive manufacturing of customized prosthetics and implants for biomedical applications. In: Brandt M., editor. Laser Additive Manufacturing. Elsevier; Amsterdam, The Netherlands: 2017. pp. 399–420.
Yang J., Gu D., Lin K., Wu L., Zhang H., Guo M., Yuan L. Laser additive manufacturing of cellular structure with enhanced com-pressive performance inspired by Al–Si crystalline microstructure. CIRP J. Manuf. Sci. Technol. 2021;32:26–36. doi: 10.1016/j.cirpj.2020.11.003. DOI
Nazir A., Abate K.M., Kumar A., Jeng J.-Y. A state-of-the-art review on types, design, optimization, and additive manufactu-ring of cellular structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI
Nemes-Károly I., Szebényi G. Reliable Methods for Classification, Characterization, and Design of Cellular Structures for Patient-Specific Implants. Materials. 2023;16:4146. doi: 10.3390/ma16114146. PubMed DOI PMC
Ghanbari-Ghazijahani T., Kasebahadi M., Hassanli R., Classen M. 3D printed honeycomb cellular beams made of composite materials (plastic and timber) Constr. Build. Mater. 2022;315:125541. doi: 10.1016/j.conbuildmat.2021.125541. DOI
Calignano F., Lorusso M., Roppolo I., Minetola P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines. 2020;8:52. doi: 10.3390/machines8030052. DOI
Nguyen-Van V., Choudhry N.K., Panda B., Nguyen-Xuan H., Tran P. Performance of concrete beam reinforced with 3D printed Bioinspired primitive scaffold subjected to three-point bending. Autom. Constr. 2022;134:104060. doi: 10.1016/j.autcon.2021.104060. DOI
Ormiston S., Srinivas Sundarram S. Fiberglass-reinforced triply periodic minimal surfaces (TPMS) lattice structures for ener-gy absorption applications. Polym. Compos. 2023;45:523–534. doi: 10.1002/pc.27795. DOI
Alarifi I.M. A performance evaluation study of 3d printed nylon/glass fiber and nylon/carbon fiber composite materials. J. Mater. Res. Technol. 2022;21:884–892. doi: 10.1016/j.jmrt.2022.09.085. DOI
Cui Z., Huang X., Jia M., Panahi-Sarmad M., Hossen I., Dong K., Xiao X. 3D printing of continuous fiber reinforced cellular structural composites for the study of bending performance. J. Reinf. Plast. Compos. 2023;42:673–684. doi: 10.1177/07316844221137017. DOI
Myers D., Abdel-Wahab A., Hafeez F., Kovacev N., Essa K. Optimisation of the additive manufacturing parameters of poly-lactic acid (PLA) cellular structures for biomedical applications. J. Mech. Behav. Biomed. Mater. 2022;136:105447. doi: 10.1016/j.jmbbm.2022.105447. PubMed DOI
Tao Y., Pan L., Liu D., Li P. A case study: Mechanical modeling optimization of cellular structure fabricated using wood flour-filled polylactic acid composites with fused deposition modeling. Compos. Struct. 2019;216:360–365. doi: 10.1016/j.compstruct.2019.03.010. DOI
Zhang Y., Liu B., Peng F., Jia H., Zhao Z., Duan S., Wang P., Lei H. Adaptive enhancement design of triply periodic minimal surface lattice structure based on non-uniform stress distribution. Appl. Math. Mech. 2023;44:1317–1330. doi: 10.1007/s10483-023-3013-9. DOI
Zhu J., Zou S., Mu Y., Wang J., Jin Y. Additively Manufactured Scaffolds with Optimized Thickness Based on Triply Periodic Minimal Surface. Materials. 2022;15:7084. doi: 10.3390/ma15207084. PubMed DOI PMC
Yu S., Sun J., Bai J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. 2019;182:108021. doi: 10.1016/j.matdes.2019.108021. DOI
Abueidda D.W., Elhebeary M., Shiang C.-S., Pang S., Abu Al-Rub R.K., Jasiuk I.M. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater. Des. 2019;165:107597. doi: 10.1016/j.matdes.2019.107597. DOI
Han L., Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv. Mater. 2018;30:e1705708. doi: 10.1002/adma.201705708. PubMed DOI
Callens S.J.P., Tümer N., Zadpoor A.A. Hyperbolic origami-inspired folding of triply periodic minimal surface structures. Appl. Mater. Today. 2019;15:453–461. doi: 10.1016/j.apmt.2019.03.007. DOI
Awd M., Saeed M., Walther F. A review on the enhancement of failure mechanisms modeling in additively manufactured structures by machine learning. Eng. Fail. Anal. 2023;151:107403. doi: 10.1016/j.engfailanal.2023.107403. DOI
Hassan I.M., Enab T.A., Fouda N., Eldesouky I. The mechanical performance of functionally graded Schwarz primitive and Schoen-IWP cellular structures fabricated by additive manufacturing. Prog. Addit. Manuf. 2023;8:303–311. doi: 10.1007/s40964-022-00333-3. DOI
Mishra A.M., Kumar A. Performance of asymmetric octet lattice structures under compressive and bending loads. Eng. Fail. Anal. 2023;154:107669. doi: 10.1016/j.engfailanal.2023.107669. DOI
Guo X., Ding J., Li X., Qu S., Song X., Fuh J.Y.H., Lu W.F., Zhai W. Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design. Int. J. Mech. Sci. 2022;216:106977. doi: 10.1016/j.ijmecsci.2021.106977. DOI
Kladovasilakis N., Tsongas K., Tzetzis D. Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply Periodic Minimal Surface Structures. J. Compos. Sci. 2021;5:58. doi: 10.3390/jcs5020058. DOI
Restrepo S., Ocampo S., Ramírez J.A., Paucar C., García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J. Phys. Conf. Ser. 2017;935:012036. doi: 10.1088/1742-6596/935/1/012036. DOI
Downing D., Jones A., Brandt M., Leary M. Increased efficiency gyroid structures by tailored material distribution. Mater. Des. 2021;197:109096. doi: 10.1016/j.matdes.2020.109096. DOI
Papadopoulou S., Vazdirvanidis A., Toulfatzis A., Rikos A., Pantazopoulos G. Failure Investigation of Products and Components in Metal Forming Industry: Root Cause Analysis and Process-Based Approach. J Fail. Anal. and Preven. 2020;20:106–114. doi: 10.1007/s11668-020-00801-4. DOI
Korol’ M., Török J., Goryl K., Vodilka A. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2024. Research of Selected TPMS Structures Made of ABS and Nylon 12 CF Material Using the FDM, Advances in Manufacturing IV. DOI
Monkova K., Monka P.P., Vodilka A. Comparison of the Bending Behavior of Cylindrically Shaped Lattice Specimens with Radially and Orthogonally Arranged Cells Made of ABS. Polymers. 2024;16:979. doi: 10.3390/polym16070979. PubMed DOI PMC
Plastics Determination of Flexural Properties. ISO; Geneva, Switzerland: 2019.
Rodríguez-Reyna S., Díaz-Aguilera J., Acevedo-Parra H., García C.J., Gutierrez-Castañeda E.J., Tapia F. Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads. J. Mech. Behav. Biomed. Mater. 2024;150:106257. doi: 10.1016/j.jmbbm.2023.106257. PubMed DOI
Vidakis N., Petousis M., Velidakis E., Tzounis L., Mountakis N., Boura O., A Grammatikos S. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Adv. Compos. Mater. 2022;31:630–654. doi: 10.1080/09243046.2022.2076019. DOI
Kahraman M.F., İriç S., Genel K. Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study. Eng. Fail. Anal. 2024;157:107963. doi: 10.1016/j.engfailanal.2024.107963. DOI
Vanca J., Monkova K., Žaludek M., Monka P.P., Koroľ M., Kozak D., Beno P., Ferroudji F. Investigation of the Influence of Orientation on the Tensile Pro-perties of 3D Printed Samples with Gyroid Structure; Proceedings of the 13th International Conference on Mechanical and Aerospace Engineering; Bratislava, Slovakia. 20–22 July 2022; New York, NY, USA: Institute of Electrical and Electronics Engineers; 2022. pp. 526–531.
Dazon C., Witschger O., Llewellyn P.L. Performance of the halogen technology for determining the moisture content of nanoparticulate powders. Exp. Tech. 2019;43:757–764. doi: 10.1007/s40799-019-00332-0. DOI
Seyedzavvar M., Boğa C., Zehir B. Experimental study and hybrid optimization of material extrusion process parameters for enhancement of fracture resistance of biodegradable nanocomposites. Eng. Fail. Anal. 2023;150:107294. doi: 10.1016/j.engfailanal.2023.107294. DOI
Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2022.
Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PP50069-2022. National Patent. 2022 December 20;
Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PCT/SK2023/050030. International Patent. 2023 October 15;
Monka P.P., Monkova K. Method of Heat Treatment of Materials with Control of Spatial Arrangement. PUV50104-2022. Utility model. 2022 December 20;
Valvez S., Reis P.N.B., Ferreira J.A.M. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J. Mater. Res. Technol. 2023;23:2101–2115. doi: 10.1016/j.jmrt.2023.01.097. DOI
Kožar I., Sulovsky T., Plovanić M., Božić Ž. Verification of a displacement model for three-point bending test. Procedia Struct. Integr. 2023;46:143–148. doi: 10.1016/j.prostr.2023.06.024. DOI
Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI
Subhani M., Globa A., Al-Ameri R., Moloney J. Flexural strengthening of LVL beam using CFRP. Constr. Build. Mater. 2017;150:480–489. doi: 10.1016/j.conbuildmat.2017.06.027. DOI
Nabavi-Kivi A., Ayatollahi M.R., Schmauder S., Khosravani M.R. Fracture analysis of a 3D-printed ABS specimen: Effects of raster angle and layer orientation. Fiz. Mezomekhanika. 2022;25:26–39. doi: 10.55652/1683-805X_2022_25_5_26. DOI
Kim T.-K., Park J.-S. Evaluation of the Performance and Ductility Index of Concrete Structures Using Advanced Composite Material Strengthening Methods. Polymers. 2021;13:4239. doi: 10.3390/polym13234239. PubMed DOI PMC