Cranial Electrode Belt Position Improves Diagnostic Possibilities of Electrical Impedance Tomography during Laparoscopic Surgery with Capnoperitoneum
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS23/198/OHK4/3T/17
Czech Technical University in Prague
PubMed
37896737
PubMed Central
PMC10611224
DOI
10.3390/s23208644
PII: s23208644
Knihovny.cz E-zdroje
- Klíčová slova
- belt position, capnoperitoneum, electrical impedance tomography, laparoscopy,
- MeSH
- elektrická impedance MeSH
- elektrody MeSH
- laparoskopie * MeSH
- lidé MeSH
- počítačová rentgenová tomografie * MeSH
- tomografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Laparoscopic surgery with capnoperitoneum brings many advantages to patients, but also emphasizes the negative impact of anesthesia and mechanical ventilation on the lungs. Even though many studies use electrical impedance tomography (EIT) for lung monitoring during these surgeries, it is not clear what the best position of the electrode belt on the patient's thorax is, considering the cranial shift of the diaphragm. We monitored 16 patients undergoing a laparoscopic surgery with capnoperitoneum using EIT with two independent electrode belts at different tomographic levels: in the standard position of the 4th-6th intercostal space, as recommended by the manufacturer, and in a more cranial position at the level of the axilla. Functional residual capacity (FRC) was measured, and a recruitment maneuver was performed at the end of the procedure by raising the positive end-expiratory pressure (PEEP) by 5 cmH2O. The results based on the spectral analysis of the EIT signal show that the ventilation-related impedance changes are not detectable by the belt in the standard position. In general, the cranial belt position might be more suitable for the lung monitoring during the capnoperitoneum since the ventilation signal remains dominant in the obtained impedance waveform. FRC was significantly decreased by the capnoperitoneum and remained lower also after desufflation.
Zobrazit více v PubMed
Özdemir-van Brunschot D.M.D., van Laarhoven K.C.J.M.H., Scheffer G.J., Pouwels S., Wever K.E., Warlé M.C. What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review. Surg. Endosc. 2015;30:2049–2065. doi: 10.1007/s00464-015-4454-9. PubMed DOI PMC
Atkinson T.M., Giraud G.D., Togioka B.M., Jones D.B., Cigarroa J.E. Cardiovascular and Ventilatory Consequences of Laparoscopic Surgery. Circulation. 2017;135:700–710. doi: 10.1161/CIRCULATIONAHA.116.023262. PubMed DOI
Buzkova K., Rara A., Muller M., Roubik K., Tyll T. Ultrasound detection of diaphragm position in the region for lung monitoring by electrical impedance tomography during laparoscopy. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 2018;162:43–46. doi: 10.5507/bp.2018.005. PubMed DOI
Andersson L.E., Maath M., Thorne A., Aspelin P., Odeberg-Wernerman S. Effect of Carbon Dioxide Pneumoperitoneum on Development of Atelectasis during Anaesthesia, Examined by Spiral Computed Tomography. Anesthesiology. 2005;102:293–299. doi: 10.1097/00000542-200502000-00009. PubMed DOI
Grabowski J.E., Talamini M.A. Physiological Effects of Pneumoperitoneum. J. Gastrointest. Surg. 2009;13:1009–1016. doi: 10.1007/s11605-008-0662-0. PubMed DOI
Hasukic S., Mesic D. Postoperative pulmonary changes after laparoscopic cholecystectomy. Med. Arh. 2001;55:91–93. doi: 10.5144/0256-4947.2002.259a. PubMed DOI
Bikker I.G., Preis C., Egal M., Bakker J., Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit. Care. 2011;15:R193. doi: 10.1186/cc10354. PubMed DOI PMC
Karsten J., Luepschen H., Grossherr M., Bruch H.P., Leonhardt S. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anesthesiol. Scand. 2011;55:160–163. doi: 10.1111/j.1399-6576.2011.02467.x. PubMed DOI
Erlandsson K., Odenstedt H., Lundin S., Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anesthesiol. Scand. 2006;50:833–839. doi: 10.1111/j.1399-6576.2006.01079.x. PubMed DOI
Pereira S.M., Tucci M.R., Morais C.C.A., Simões C.M., Tonelotto B.F.F., Pompeo M.S., Kay F.U., Pelosi P., Vieira J.E., Amato M.B.P. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology. 2018;129:1070–1081. doi: 10.1097/ALN.0000000000002435. PubMed DOI
Bordes J., Mazzeo C., Gourtobe P., Cungi P.J., Antonini F., Bourgoin S., Kaiser E. Impact of Extraperitoneal Dioxyde Carbon Insufflation on Respiratory Function in Anesthetized Adults: A Preliminary Study Using Electrical Impedance Tomography and Wash-out/Wash-in Technic. Anesth. Pain Med. 2015;5:e22845. doi: 10.5812/aapm.22845. PubMed DOI PMC
Jung K., Kim S., Kim B.J., Park M. Comparison of Positive End-Expiratory Pressure versus Tidal Volume-Induced Ventilator-Driven Alveolar Recruitment Maneuver in Robotic Prostatectomy: A Randomized Controlled Study. J. Clin. Med. 2021;10:3921. doi: 10.3390/jcm10173921. PubMed DOI PMC
He X., Jiang J., Liu Y., Xu H., Zhou S., Yang S., Shi X., Yuan H. Electrical Impedance Tomography-guided PEEP Titration in Patients Undergoing Laparoscopic Abdominal Surgery. Medicine. 2016;95:e3306. doi: 10.1097/MD.0000000000003306. PubMed DOI PMC
Teschner E., Imhoff M., Leonhardt S. Electrical Impedance Tomography: The Realization of Regional Ventilation Monitoring. 2nd ed. Dräger Medical GmbH; Lübeck, Germany: 2015.
Instructions for Use PulmoVista 500, Electrical Impedance Tomograph Software 1.2n. 1st ed. Drägerwerk AG & Co. KGaA; Lübeck, Germany: 2017.
Karsten J., Stueber T., Voigt N., Teschner E., Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: A prospective observational study. Crit. Care. 2016;20:3. doi: 10.1186/s13054-015-1161-9. PubMed DOI PMC
Medical Electrical Equipment. 3.2. ed. International Electrotechnical Commission; London, UK: 2020.
Roubik K., Sobota V., Laviola M. Selection of the Baseline Frame for Evaluation of Electrical Impedance Tomography of the Lungs; Proceedings of the 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI); Sliema, Malta. 17 August 2015; pp. 293–297. DOI
Matsunaga A., Ohse K., Kakihana Y., Masuda M., Ikoma K., Kanmura Y. Effect of pneumoperitoneum on functional residual capacity. Adv. Exp. Med. Biol. 2012;737:239–243. doi: 10.1007/978-1-4614-1566-4_35. PubMed DOI
Midgley S., Tolley D.A. Anaesthesia for Laparoscopic Surgery in Urology. EAU-EBU Update Ser. 2006;4:241–245. doi: 10.1016/j.eeus.2006.08.003. DOI
Schaefer M.S., Wania V., Bastin B., Schmalz U., Kienbaum P., Beiderlinden M., Treschan T.A. Electrical impedance tomography during major open upper abdominal surgery: A pilot-study. BMC Anesthesiol. 2014;14:51. doi: 10.1186/1471-2253-14-51. PubMed DOI PMC
Stankiewicz-Rudnicki M., Gaszynski W., Gaszynski T. Assessment of Ventilation Distribution during Laparoscopic Bariatric Surgery: An Electrical Impedance Tomography Study. Biomed. Res. Int. 2016;2016:7423162. doi: 10.1155/2016/7423162. PubMed DOI PMC
Gitas G., Hanker L., Rody A., Ackermann J., Alkatout I. Robotic surgery in gynecology: Is the future already here? Minim. Invasive Ther. Allied Technol. 2022;31:815–824. doi: 10.1080/13645706.2021.2010763. PubMed DOI
Rodríguez-Sanjuán J.C., Gómez-Ruiz M., Trugeda-Carrera S., Manuel-Palazuelos C., López-Useros A., Gómez-Fleitas M. Laparoscopic and robot-assisted laparoscopic digestive surgery: Present and future directions. World J. Gastroenterol. 2016;22:1975–2004. doi: 10.3748/wjg.v22.i6.1975. PubMed DOI PMC
Zahid A., Ayyan M., Farooq M., Cheema H.A., Shahid A., Naeem F., Ilyas M.A., Sohail S. Robotic surgery in comparison to the open and laparoscopic approaches in the field of urology: A systematic review. J. Robot. Surg. 2023;17:11–29. doi: 10.1007/s11701-022-01416-7. PubMed DOI