The effects of cerebral oximetry in mechanically ventilated newborns: a protocol for the SafeBoosC-IIIv randomised clinical trial
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu protokol klinické studie, časopisecké články
PubMed
37898759
PubMed Central
PMC10612349
DOI
10.1186/s13063-023-07699-x
PII: 10.1186/s13063-023-07699-x
Knihovny.cz E-zdroje
- Klíčová slova
- Brain injury, Mechanical ventilation, Near infrared spectroscopy, Protocol, Randomised clinical trial,
- MeSH
- dítě MeSH
- jednotky intenzivní péče o novorozence MeSH
- kojenec MeSH
- lidé MeSH
- mozek MeSH
- mozkový krevní oběh MeSH
- novorozenec MeSH
- oxymetrie * metody MeSH
- randomizované kontrolované studie jako téma MeSH
- umělé dýchání * škodlivé účinky MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- protokol klinické studie MeSH
BACKGROUND: The SafeBoosC project aims to test the clinical value of non-invasive cerebral oximetry by near-infrared spectroscopy in newborn infants. The purpose is to establish whether cerebral oximetry can be used to save newborn infants' lives and brains or not. Newborns contribute heavily to total childhood mortality and neonatal brain damage is the cause of a large part of handicaps such as cerebral palsy. The objective of the SafeBoosC-IIIv trial is to evaluate the benefits and harms of cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. METHODS/DESIGN: SafeBoosC-IIIv is an investigator-initiated, multinational, randomised, pragmatic phase-III clinical trial. The inclusion criteria will be newborns with a gestational age more than 28 + 0 weeks, postnatal age less than 28 days, predicted to require mechanical ventilation for at least 24 h, and prior informed consent from the parents or deferred consent or absence of opt-out. The exclusion criteria will be no available cerebral oximeter, suspicion of or confirmed brain injury or disorder, or congenital heart disease likely to require surgery. A total of 3000 participants will be randomised in 60 neonatal intensive care units from 16 countries, in a 1:1 allocation ratio to cerebral oximetry versus usual care. Participants in the cerebral oximetry group will undergo cerebral oximetry monitoring during mechanical ventilation in the neonatal intensive care unit for as long as deemed useful by the treating physician or until 28 days of life. The participants in the cerebral oximetry group will be treated according to the SafeBoosC treatment guideline. Participants in the usual care group will not receive cerebral oximetry and will receive usual care. We use two co-primary outcomes: (1) a composite of death from any cause or moderate to severe neurodevelopmental disability at 2 years of corrected age and (2) the non-verbal cognitive score of the Parent Report of Children's Abilities-Revised (PARCA-R) at 2 years of corrected age. DISCUSSION: There is need for a randomised clinical trial to evaluate cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. TRIAL REGISTRATION: The protocol is registered at www. CLINICALTRIALS: gov (NCT05907317; registered 18 June 2023).
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Intensive Care Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Neonatology Children's University Hospital of Zürich Zurich Switzerland
Department of Neonatology Copenhagen University Hospital ─ Rigshospitalet Copenhagen Denmark
Department of Neonatology La Paz University Hospital Madrid Spain
Department of Neonatology Oslo University Hospital Oslo Norway
Department of Neonatology Royal Hospital for Children Glasgow UK
Department of Neonatology University Hospital Leuven Louvain Belgium
Department of Neonatology University Hospital Motol Prague Czech Republic
Department of Pediatrics Medical University of Graz Graz Austria
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Milan Italy
Infant Centre and Department of Paediatrics and Child Health University College Cork Cork Ireland
NICU Department of Paediatrics University General Hospital of Patras Patras Greece
Zobrazit více v PubMed
Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med. 1993;21(1):131–143. doi: 10.1097/00003246-199301000-00024. PubMed DOI
Attar MA, Donn SM. Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol. 2002;7(5):353–360. doi: 10.1053/siny.2002.0129. PubMed DOI
Nkadi PO, Merritt TA, Pillers D-AM. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab. 2009;97(2):95–101. PubMed PMC
Overview of mechanical ventilation in neonates [Internet]. 2021 [cited 09/08/2021]. Available from: https://www.uptodate.com/contents/overview-of-mechanical-ventilation-in-neonates?search=mechanical%20ventilation&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#references.
Miller JD, Carlo WA. Pulmonary complications of mechanical ventilation in neonates. Clin Perinatol. 2008;35(1):273–281. doi: 10.1016/j.clp.2007.11.004. PubMed DOI
Stolwijk LJ, Lemmers PM, Harmsen M, Groenendaal F, de Vries LS, van der Zee DC, et al. Neurodevelopmental outcomes after neonatal surgery for major noncardiac anomalies. Pediatrics. 2016;137(2):e20151728. doi: 10.1542/peds.2015-1728. PubMed DOI
Larsen ML, Rackauskaite G, Greisen G, Laursen B, Uldall P, Krebs L, et al. Declining prevalence of cerebral palsy in children born at term in Denmark. Dev Med Child Neurol. 2022;64(6):715–722. doi: 10.1111/dmcn.15136. PubMed DOI
Baik-Schneditz N, Schwaberger B, Bresesti I, Fuchs H, Lara I, Nakstad B, et al. Fetal to neonatal transition: what additional information can be provided by cerebral near infrared spectroscopy? Pediatr Res. 2022. 10.1038/s41390-022-02081-0. PubMed
Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:g7635. doi: 10.1136/bmj.g7635. PubMed DOI PMC
Hansen ML, Pellicer A, Hyttel-Sørensen S, Ergenekon E, Szczapa T, Hagmann C, et al. Cerebral oximetry monitoring in extremely preterm infants. N Engl J Med. 2023;388(16):1501–1511. doi: 10.1056/NEJMoa2207554. PubMed DOI
Hansen ML, et al. Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis. Pediatr Res. 2022. 10.1038/s41390-022-01995-z. PubMed
Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586. PubMed DOI PMC
Hyttel-Sorensen S, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev. 2017;9(9):Cd011506. PubMed PMC
Hansen ML, Pellicer A, Gluud C, Dempsey E, Mintzer J, Hyttel-Sørensen S, et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials. 2019;20(1):811. doi: 10.1186/s13063-019-3955-6. PubMed DOI PMC
Hyttel-Sørensen S, Kleiser S, Wolf M, Greisen G. Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom. Biomed Opt Express. 2013;4(9):1662–1672. doi: 10.1364/BOE.4.001662. PubMed DOI PMC
The INIS Study International Neonatal Immunotherapy Study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: an international, placebo controlled, multicentre randomised trial. BMC Pregnancy Childbirth. 2008;8:52. doi: 10.1186/1471-2393-8-52. PubMed DOI PMC
Patel RM, Ferguson J, McElroy SJ, Khashu M, Caplan MS. Defining necrotizing enterocolitis: current difficulties and future opportunities. Pediatr Res. 2020;88(Suppl 1):10–15. doi: 10.1038/s41390-020-1074-4. PubMed DOI PMC
European Medicines Agency, Committee for Human Medicinal Products. Guideline on Good Clinical Practice E6(R2). 2017.
Hyttel-Sørensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:g7635. doi: 10.1136/bmj.g7635. PubMed DOI PMC
Olsen MH, Hansen ML, Safi S, Jakobsen JC, Greisen G, Gluud C. Central data monitoring in the multicentre randomised SafeBoosC-III trial - a pragmatic approach. BMC Med Res Methodol. 2021;21(1):160. doi: 10.1186/s12874-021-01344-4. PubMed DOI PMC
Green DW, Kunst G. Cerebral oximetry and its role in adult cardiac, non-cardiac surgery and resuscitation from cardiac arrest. Anaesthesia. 2017;72(Suppl 1):48–57. doi: 10.1111/anae.13740. PubMed DOI
Ødegård SS, Torp H, Follestad T, Leth-Olsen M, Støen R, Nyrnes SA. Low frequency cerebral arterial and venous flow oscillations in healthy neonates measured by NeoDoppler. Front Pediatr. 2022;10:929117. doi: 10.3389/fped.2022.929117. PubMed DOI PMC
Serraino GF, Murphy GJ. Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised trials. BMJ Open. 2017;7(9):e016613. doi: 10.1136/bmjopen-2017-016613. PubMed DOI PMC
Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1(1):Cd010947. PubMed PMC
Hofer A, Leitner S, Kreuzer M, Meier J. Differential diagnosis of alterations in arterial flow and tissue oxygenation on venoarterial extracorporeal membrane oxygenation. Int J Artif Organs. 2017;40(11):651–655. doi: 10.5301/ijao.5000642. PubMed DOI
Levy PT, Pellicer A, Schwarz CE, Neunhoeffer F, Schuhmann MU, Breindahl M, et al. Near-infrared spectroscopy for perioperative assessment and neonatal interventions. Pediatr Res. 2021. 10.1038/s41390-021-01791-1. PubMed
Greisen G, et al. Cerebral oximetry in preterm infants–to use or not to use, that is the question. Front Pediatr. 2022;9:747660. 10.3389/fped.2021.747660. PubMed PMC
Greisen G, van Bel F. Equipoise is necessary for randomising patients to clinical trials. Acta Paediatr. 2016;105(11):1259–1260. doi: 10.1111/apa.13549. PubMed DOI
Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162. doi: 10.1186/s12874-017-0442-1. PubMed DOI PMC
ClinicalTrials.gov
NCT05907317