Nodule-specific Cu+ -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
60077344
Biologické Centrum, Akademie Věd České Republiky
PEJ-2020-TL-BIO-18547
Comunidad de Madrid
CA19116
European Cooperation in Science and Technology
AGL2018-095996-B-100
Ministerio de Ciencia e Innovación
PRE2019-089164
Ministerio de Ciencia e Innovación
CZ.02.1.01/0.0/0.0/15_003/0000336
Ministerstvo Školství, Mládeže a Tělovýchovy
DBI-0703285
National Science Foundation
PubMed
37915139
DOI
10.1111/nph.19360
Knihovny.cz E-zdroje
- Klíčová slova
- copper, copper transport, metallochaperone, nitrogen fixation, nodulation,
- MeSH
- fixace dusíku * genetika MeSH
- kořenové hlízky rostlin metabolismus MeSH
- měď metabolismus MeSH
- Medicago truncatula * genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- symbióza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- měď MeSH
- rostlinné proteiny MeSH
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Zobrazit více v PubMed
Abreu I, Saez A, Castro-Rodríguez R, Escudero V, Rodríguez-Haas B, Senovilla M, Larue C, Grolimund D, Tejada-Jiménez M, Imperial J et al. 2017. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells. Plant, Cell & Environment 40: 2706-2719.
Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM. 2008. Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins αA- and αB-crystallin. Journal of Molecular Biology 382: 812-824.
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. 2021. The CopA2-type ATPase CcoI serves as central hub for cbb3-type cytochrome oxidase biogenesis. Frontiers in Microbiology 12: 712465.
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B et al. 2016. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum L. New Phytologist 210: 1244-1258.
Andresen E, Peiter E, Küpper H. 2018. Trace metal metabolism in plants. Journal of Experimental Botany 69: 909-954.
Argüello JM, Eren E, González-Guerrero M. 2007. The structure and function of heavy metal transport P1B-ATPases. Biometals 20: 233-2348.
Attallah C, Welchen E, Martin AP, Spinelli SV, Bonnard G, Palatnik JF, Gonzalez DH. 2011. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. Journal of Experimental Botany 62: 4281-4294.
Blaby-Haas CE, Padilla-Benavides T, Stübe R, Argüello JM, Merchant SS. 2014. Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proceedings of the National Academy of Sciences, USA 111: E5480-E5487.
Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions 14: 695-700.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 7: 248-254.
Brenner AJ, Harris ED. 1995. A quantitative test for copper using bicinchoninic acid. Analytical Biochemistry 226: 80-84.
Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argüeso T. 1994. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. Journal of Bacteriology 176: 5297-5303.
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. 2020. Biosynthesis of nitrogenase cofactors. Chemical Reviews 120: 4921-4968.
Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M. 2009. Copper homeostasis. New Phytologist 182: 799-816.
Castro-Rodríguez R, Abreu I, Reguera M, Novoa-Aponte L, Mijovilovich A, Escudero V, Jiménez-Pastor FJ, Abadía J, Wen J, Mysore KS et al. 2020. The Medicago truncatula Yellow Stripe1-Like3 gene is involved in vascular delivery of transition metals to root nodules. Journal of Experimental Botany 71: 7257-7269.
Chai LX, Dong K, Liu SY, Zhang Z, Zhang XP, Tong X, Zhu FF, Zou JZ, Wang XB. 2020. A putative nuclear copper chaperone promotes plant immunity in Arabidopsis. Journal of Experimental Botany 71: 6684-6696.
Changella A. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1397.
Cheng HP, Walker GC. 1998. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. Journal of Bacteriology 180: 5183-5191.
Chong IKW, Ho WS. 2019. Glyceraldehyde-3-phosphate dehydrogenase from Chironomidae showed differential activity towards metals. Protein & Peptide Letters 20: 970-976.
Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li H, Jinn TL. 2005. A copper chaperone for superoxide dismutase that confers three types of copper/zinc Superoxide dismutase activity in Arabidopsis. Plant Physiology 139: 425-436.
Deblaere R, Bytebier B, de Greve H, Deboeck F, Schell J, van Montagu M, Leemans J. 1985. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Research 13: 4777.
Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, Westermann B. 2002. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Molecular Biology of the Cell 13: 847-853.
Downie JA. 2014. Legume nodulation. Current Biology 24: R184-R190.
Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN, Randall SK. 1999. A new class of proteins capable of binding transition metals. Plant Molecular Biology 41: 139-150.
Eren E, González-Guerrero M, Kaufman B, Argüello JM. 2007. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn2+-ATPase HMA2. Biochemistry 46: 7754-7764.
Escudero V, Abreu I, del Sastre E, Tejada-Jiménez M, Larue C, Novoa-Aponte L, Castillo-González J, Wen J, Mysore KS, Abadía J et al. 2020a. Nicotianamine Synthase 2 is required for symbiotic nitrogen fixation in Medicago truncatula nodules. Frontiers in Plant Science 10: 1780.
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS et al. 2020b. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist 228: 194-209.
Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. 2016. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytologist 211: 1129-1141.
Gao X, Ziyun D, Patel TB. 2005. Copper and zinc inhibit Galphas function: a nucleotide-free state of Galphas induced by Cu2+ and Zn2+. Journal of Biological Chemistry 280: 2579-2586.
Goldstein S, Meyerstein D, Czapski G. 1993. The Fenton reagents. Free Radical Biology and Medicine 15: 435-445.
González-Guerrero M, Argüello JM. 2008. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proceedings of the National Academy of Science, USA 105: 5992-5997.
González-Guerrero M, Escudero V, Sáez Á, Tejada-Jiménez M. 2016. Transition metal transport in plants and associated endosymbionts Arbuscular mycorrhizal fungi and rhizobia. Frontiers in Plant Science 7: 1088.
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. 2023. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. New Phytologist 239: 2113-2125.
González-Guerrero M, Raimunda D, Cheng X, Argüello JM. 2010. Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Molecular Microbiology 78: 1246-1258.
Guo T, Weber H, Niermann MCE, Theisl L, Leonte G, Novál O, Werner T. 2021. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. Molecular Plant 14: 1918-1934.
Hamilton GA, Libby RD, Hartzell CR. 1973. The valence of copper and the role of superoxide in the D-galactose oxidase catalyzed reaction. Biochemical and Biophysical Research Communications 55: 333-340.
Hardy RWF, Holsten RD, Jackson EK, Burns RC. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology 43: 1185-1207.
Johnston AW, Yeoman KH, Wexler M. 2001. Metals and the rhizobial-legume symbiosis - uptake, utilization and signalling. Advances in Microbial Physiology 45: 113-156.
Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch PR, Batut J. 1989. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. Journal of Bacteriology 171: 929-939.
Kaur A, Pati PK, Pati AM, Nagpal AK. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS ONE 12: e0184523.
Kim JG, Li X, Roden JA, Taylor KW, Aakre CD, Su B, Lalonde S, Kirik A, Chen Y, Baranage G et al. 2009. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21: 1305-1323.
Kryvoruchko IS, Routray P, Sinharoy S, Torres-Jerez I, Tejada-Jiménez M, Finney LA, Nakashima J, Pislariu CI, Benedito VA, González-Guerrero M et al. 2018. An iron-activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation. Plant Physiology 176: 2315-2329.
Küpper H, Andresen E. 2016. Mechanisms of metal toxicity in plants. Metallomics 8: 269-285.
Küpper H, Bokhari SNH, Jaime-Pérez N, Lyubenova L, Ashraf N, Andresen E. 2019. Ultratrace metal speciation analysis by coupling of sector-field ICP-MS to high-resolution size exclusion and reversed-phase liquid chromatography. Analytical Chemistry 91: 10961-10969.
Küpper H, Küpper F, Spiller M. 1996. Environmental relevance of heavy metal substituted chlorophylls using the example of submersed water plants. Journal of Experimental Botany 47: 259-266.
Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O. 2002. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology 38: 429-441.
Li L, Kaplan J. 2001. The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. Journal of Biological Chemistry 276: 5036-5043.
Lin SJ, Pufahl RA, Dancis A, O'Halloran TV, Culotta VC. 1997. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. Journal of Biological Chemistry 272: 9215-9220.
Liu M, Saha N, Gajan A, Saadat N, Gupta SV, Pile LA. 2020. A complex interplay between SAM synthetase and the epigenetic regulator SIN3 controls metabolism and transcription. Journal of Biological Chemistry 295: 375-389.
Macomber L, Imlay JA. 2009. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences, USA 106: 8344-8349.
Maróti G, Downie JA, Kondorosi E. 2015. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Current Opinion on Plant Biology 26: 57-63.
Marschner P. 2011. Mineral nutrition of higher plants, 3rd edn. Amsterdam, the Netherlands: Academic Press.
Merkle T. 2011. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports 30: 153-176.
Mira H, Martínez-García F, Peñarrubia L. 2001. Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. The Plant Journal 25: 521-528.
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering 104: 34-41.
Narindrasorasak S, Yao P, Sarkar B. 2003. Protein disulfide isomerase, a multifunctional protein chaperone, shows copper-binding activity. Biochemical and Biophysical Research Communications 311: 405-414.
O'Hara GW. 2001. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Australian Journal of Experimental Agriculture 41: 417-433.
Palumaa P, Kangur L, Voronova A, Sillard R. 2004. Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochemical Journal 382: 307-314.
Patel SJ, Padilla-Benavides T, Collins JM, Argüello JM. 2014. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiology 160: 1237-1251.
Preisig O, Zufferey R, Thony-Meyer L, Appleby CA, Hennecke H. 1996. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis- specific respiratory chain of Bradyrhizobium japonicum. Journal of Bacteriology 178: 1532-1538.
Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. 1999. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805-808.
Robinson NJ, Winge DR. 2010. Copper metallochaperones. Annual Review in Biochemistry 79: 537-562.
Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics 16: 339-346.
Schultz LW, Chivers PT, Raines RT. 1999. The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin. Acta Crystallographica D55: 1533-1538.
Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi MK, Imperial J, González-Guerrero M. 2018. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. New Phytologist 218: 696-709.
Sherman F, Fink GR, Hicks JB. 1983. Methods in yeast genetics. Cold Spring Harbour Lab.
Shin LJ, Lo JC, Yeh KC. 2012. Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiology 159: 1099-1110.
Soma S, Latimer AJ, Chun H, Vicary AC, Timbalia SA, Boulet A, Rahn JJ, Chan SSL, Leary SC, Kim BEK et al. 2018. Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proceedings of the National Academy of Sciences, USA 115: 8161-8166.
Tehseen M, Cairns N, Sherson S, Cobbett CS. 2010. Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2: 556-564.
Tejada-Jiménez M, Castro-Rodríguez R, Kryvoruchko I, Lucas MM, Udvardi M, Imperial J, González-Guerrero M. 2015. Medicago truncatula natural resistance-associated macrophage protein 1 is required for iron uptake by rhizobia-infected nodule cells. Plant Physiology 168: 258-272.
Tejada-Jiménez M, Gil-Diez P, Leon-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. 2017. Medicago truncatula Molybdate Transporter type 1 (MOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. New Phytologist 216: 1223-1235.
Udvardi M, Poole PS. 2013. Transport and metabolism in legume-rhizobia symbioses. Annual Review in Plant Biology 64: 781-805.
Vasse J, de Billy F, Camut S, Truchet G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of Bacteriology 172: 4295-4306.
Vernoud V, Journet EP, Barker DG. 2007. MtENOD20, a Nod factor-inducible molecular marker for root cortical cell activation. Molecular Plant-Microbe Interactions 12: 604-614.
Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD. 2000. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences, USA 97: 2886-2891.
Wood WB. 1996. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. Journal of Molecular Biology 16: 118-133.
Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T. 2014. Fate map of Medicago truncatula root nodules. Development 141: 3517-3528.
Yatsunyk LA, Rosenzweig AC. 2007. Cu(I) binding and transfer by the N terminus of the Wilson disease protein. Journal of Biological Chemistry 282: 8622-8631.
Zhang B, Liu H, Ding X, Qiu J, Zhang M, Chu Z. 2018. Arabidopsis thaliana ACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu2+ ions. Journal of Cell Science 131: jcs202424.
Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. 2015. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salycilate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytologist 207: 1084-1096.