Green synthesis of Ag, Se, and Ag2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications

. 2024 Jun ; 69 (3) : 625-638. [epub] 20231102

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37917276
Odkazy

PubMed 37917276
DOI 10.1007/s12223-023-01100-9
PII: 10.1007/s12223-023-01100-9
Knihovny.cz E-zdroje

Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 µg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 µg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.

Zobrazit více v PubMed

Abdelghany TM, Al-Rajhi AMH, Yahya R, Bakri MM, Al Abboud MM, Yahya R, Qanash H, Bazaid AS, Salem SS (2022) Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conv Bioref 13:417–430. https://doi.org/10.1007/s13399-022-03412-1 DOI

Abdelmoneim HEM, Wassel MA, Elfeky AS, Bendary SH, Awad MA, Salem SS, Mahmoud SA (2021) Multiple applications of CdS/TiO DOI

Abu-Elghait M, Hasanin M, Hashem AH, Salem SS (2021) Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: characterization, antibiofilm and biocompatibility. Int J Biol Macrom 175:294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040 DOI

Adeel M, Saeed M, Khan I, Muneer M, Akram N (2021) Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 6:1426–1435. https://doi.org/10.1021/acsomega.0c05092 PubMed DOI PMC

Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Saiful Islam ABM, Ong HC (2022) Green approaches in synthesising nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environ Res 204:111967. https://doi.org/10.1016/j.envres.2021.111967 PubMed DOI

Al-Zahrani FA, Al-Zahrani NA, Al-Ghamdi SN, Lin L, Salem SS, El-Shishtawy RM (2022) Synthesis of Ag/Fe2O3 nanocomposite from essential oil of ginger via green method and its bactericidal activity. Biomass Convers Biorefin 1–9. https://doi.org/10.1007/s13399-022-03248-9

Ali J, Ali N, Wang L, Waseem H, Pan G (2019) Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 159:18–25. https://doi.org/10.1016/j.mimet.2019.02.010 PubMed DOI

Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q (2021) Noble metals based bimetallic and trimetallic nanoparticles: controlled synthesis, antimicrobial and anticancer applications. Crit Rev Anal Chem 51:454–481. https://doi.org/10.1080/10408347.2020.1743964 PubMed DOI

Arab C, El Kurdi R, Patra D (2021) Efficient removal of Congo red using curcumin conjugated zinc oxide nanoparticles as new adsorbent complex. Chemosphere 276:130158. https://doi.org/10.1016/j.chemosphere.2021.130158 PubMed DOI

Ayele DW (2016) A facile one-pot synthesis and characterization of Ag DOI

Bai JR, Zhong K, Wu YP, Elena G, Gao H (2019) Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 95:327–333. https://doi.org/10.1016/j.foodcont.2018.08.020 DOI

Benisha R, Amalanathan M, Aravind M, Mary MSM, Ahmad A, Tabassum S, Al-Qahtani WH, Ahmad I (2022) Catharanthus roseus leaf extract mediated Ag-MgO nanocatalyst for photocatalytic degradation of Congo red dye and their antibacterial activity. J Mol Struct 1262:133005. https://doi.org/10.1016/j.molstruc.2022.133005 DOI

Berta L, Coman NA, Rusu A, Tanase C (2021) A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials 14:7677. https://doi.org/10.3390/ma14247677 PubMed DOI PMC

Chen Z, Bing F, Liu Q, Zhang Z, Fang X (2015) Novel Z-scheme visible-light-driven Ag DOI

Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R (2019) Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis–a comprehensive review. IET Nanobiotechnol 13:243–249. https://doi.org/10.1049/iet-nbt.2018.5184 PubMed DOI PMC

Çakıcı T, Ozdal Ö (2021) Synthesising of MgSe complex nanoparticle via bacteria and characterisation of fabricated MgSe/p-Si structure. Acta Phys Pol A 140:9–13. https://doi.org/10.12693/APhysPolA.140.9 DOI

Çakıcı T, Özdal M, Kundakcı M, Kayalı R (2019) ZnSe and CuSe NP’s by microbial green synthesis method and comparison of IV characteristics of Au/ZnSe/p-Si/Al and Au/CuSe/p-Si/Al structures. Mater Sci Semicond Process 103:104610. https://doi.org/10.1016/j.mssp.2019.104610 DOI

Delgado-Beleño Y, Martinez-Nuñez CE, Cortez-Valadez M, Flores-López NS, Flores-Acosta M (2018) Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater Res Bull 99:385–392. https://doi.org/10.1016/j.materresbull.2017.11.015 DOI

Dikshit P, KumarJ DA, Sadhu S, Sharma S, Singh S, Gupta P, Kim B (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11:902. https://doi.org/10.3390/catal11080902 DOI

Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, Mashwani ZR, Sultana T, Mustafa N, Ikram M, Li H (2022) Plant-based bimetallic silver-zinc oxide nanoparticles: a comprehensive perspective of synthesis, biomedical applications, and future trends. Biomed Res Int 2022:1–20. https://doi.org/10.1155/2022/1215183 DOI

Elakraa AA, Salem SS, El-Sayyad GS, Attia MS (2022) Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Adv 12:26603–26619. https://doi.org/10.1039/D2RA04717A PubMed DOI PMC

Elgorban AM, El-Samawaty AERM, Abd-Elkader OH, Yassin MA, Sayed SR, Khan M, Adil SF (2017) Bioengineered silver nanoparticles using Curvularia pallescens and its fungicidal activity against Cladosporium fulvum. Saudi J Biol Sci 24:1522–1528. https://doi.org/10.1016/j.sjbs.2016.09.019 PubMed DOI

Fanoro OT, Oluwafemi OS (2020) Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles. Pharmaceutics 12:1044. https://doi.org/10.3390/pharmaceutics12111044 PubMed DOI PMC

Fouda A, Hassan SED, Eid AM, Abdel-Rahman MA, Hamza MF (2022) Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep 12:11834. https://doi.org/10.1038/s41598-022-15903-2 PubMed DOI PMC

Gabal RA, Shalaby RM, Abdelghany A, Kamal M (2019) Antimicrobial effect, electronic and structural correlation of nano-filled tin bismuth metal alloys for biomedical applications. Biointerface Res Appl Chem 9(5):4340–4344. https://doi.org/10.33263/BRIAC95.340344 DOI

Hashem AH, Salem SS (2022) Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: antimicrobial and anticancer activity. Biotechnol J 17:2100432. https://doi.org/10.1002/biot.202100432 DOI

Hashem AH, Selim TA, Alruhaili MH, Selim S, Alkhalifah DHM, Al Jaouni SK, Salem SS (2022) Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. J Funct Biomater 13:112. https://doi.org/10.3390/jfb13030112 PubMed DOI PMC

Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ (2019) Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 11:14937–14951. https://doi.org/10.1039/C9NR04424H PubMed DOI

Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A (2021) Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci Rep 11:770. https://doi.org/10.1038/s41598-020-80805-0 PubMed DOI PMC

Idris DS, Roy A (2023) Synthesis of bimetallic nanoparticles and applications-an updated review. Crystals 13:637. https://doi.org/10.3390/cryst13040637 DOI

Jayasekharan T (2018) Group IIB-VIA semiconductor oxide cluster ions. Chem Phys Lett 699:48–54. https://doi.org/10.1016/j.cplett.2018.03.039 DOI

Jha N, Esakkiraj P, Annamalai A, Lakra AK, Naik S, Arul V (2022) Synthesis, optimization and physicochemical characterization of selenium nanoparticles from polysaccharide of mangrove Rhizophora mucronata with potential bioactivities. J Trace Elem Miner 2:100019. https://doi.org/10.1016/j.jtemin.2022.100019 DOI

Khan F, Kang MG, Jo DM, Chandika P, Jung WK, Kang HW, Kim YM (2021) Phloroglucinol-gold and -zinc oxide nanoparticles: antibiofilm and antivirulence activities towards Pseudomonas aeruginosa PAO1. Mar Drugs 19:601. https://doi.org/10.3390/md19110601 PubMed DOI PMC

Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B 84:462–466. https://doi.org/10.1016/j.colsurfb.2011.01.042 DOI

Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B (2019) Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476:632–640. https://doi.org/10.1016/j.apsusc.2019.01.137 DOI

Menon S, Agarwal H, Shanmugam VK (2021) Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustain Environ Res 31:1–12. https://doi.org/10.1186/s42834-020-00072-6 DOI

Mirzaei SZ, Lashgarian HE, Karkhane M, Shahzamani K, Kamil A, Alhameedawi AK, Marzban A (2021) Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. Bioresour Bioprocess 8:1–11. https://doi.org/10.1186/s40643-021-00412-3 DOI

Mishra S, Du D, Jeanneau E, Dappozze F, Guillard C, Zhang J, Daniele S (2016) A facile molecular precursor-based synthesis of Ag PubMed DOI

Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199. https://doi.org/10.1016/j.jcis.2014.06.030 PubMed DOI

Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS (2021) Eco-friendly mycogenic synthesis of zno and cuo nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res 199:2788–2799. https://doi.org/10.1007/s12011-020-02369-4 PubMed DOI

Nair MN, Cranney M, Jiang T, Hajjar-Garreau S, Aubel D, Vonau F, Florentin A, Denys E, Bocquet ML, Simon L (2016) Noble-metal intercalation process leading to a protected adatom in a graphene hollow site. Phys Rev B 94:075427. https://doi.org/10.1103/PhysRevB.94.075427 DOI

Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19:4100. https://doi.org/10.3390/ijms19124100 PubMed DOI PMC

Ozdal OG (2023) Biosynthesis of nanoparticles using bacteria. In: Cakıcı T (ed) The trends in nano materials synthesis and applications 2, 3rd edn. Efe Academy Publishing, Istanbul, pp 225–240

Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10:115–129. https://doi.org/10.5599/admet.1172 PubMed DOI PMC

Ozdal M, Ozdal OG, Algur OF (2016) Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish J Microbiol 65:63–68. https://doi.org/10.5604/17331331.1197325 DOI

Prema P, Ranjani SS, Kumar KR, Veeramanikandan V, Mathiyazhagan N, Nguyen VH, Balaji P (2022) Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorg Chem Commun 136:109139. https://doi.org/10.1016/j.inoche.2021.109139 DOI

Qayyum S, Khan AU (2016). Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. Med Chem Comm 7:1479–1498. https://doi.org/10.1039/C6MD00124F

Raheem N, Straus SK (2019) Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol 10:2866. https://doi.org/10.3389/fmicb.2019.02866 PubMed DOI PMC

Ramkumar SS, Sivakumar N, Selvakumar G, Selvankumar T, Sudhakar C, Ashokkumar B, Karthi S (2017) Green synthesized silver nanoparticles from Garcinia imberti bourd and their impact on root canal pathogens and HepG DOI

Riaz T, Assey N, Javed M, Shahzadi T, Zaib M, Shahid S, Shahid I, Elkaeed EB, Alzhrani RM, Alzhaab HO, Awwad NS, Ibrahium H, Fatima U (2022) Biogenic plant mediated synthesis of monometallic zinc and bimetallic copper/zinc nanoparticles and their dye adsorption and antioxidant studies. Inorg Chem Commun 140:109449. https://doi.org/10.1016/j.inoche.2022.109449 DOI

Saeed S, Iqbal A, Ashraf MA (2020) Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ Sci Pollut Res 27:37347–37356. https://doi.org/10.1007/s11356-020-07610-0 DOI

Saied E, Eid AM, Hassan SED, Salem SS, Radwan AA, Halawa M, Saleh FM, Saad HA, Saied EM, Fouda A (2021) The catalytic activity of biosynthesized magnesium oxide nanoparticles (Mgo-nps) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts 11:821. https://doi.org/10.3390/catal11070821 DOI

Saied E, Mekky AE, Al-Askar AA, Hagag AF, El-bana AA, Ashraf M, Walid A, Nour T, Fawzi MM, Arishi AA, Hashem AH (2023) Aspergillus terreus-mediated selenium nanoparticles and their antimicrobial and photocatalytic activities. Crystals 13:450. https://doi.org/10.3390/cryst13030450 DOI

Salem SS (2022) Baker’s yeast-mediated silver nanoparticles: characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoSci 12:1220–1229. https://doi.org/10.1007/s12668-022-01026-5 DOI

Salem SS (2023) A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 205:128. https://doi.org/10.1007/s00203-023-03467-2 PubMed DOI PMC

Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3 PubMed DOI

Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SED, Eid AM, Shaheen TI, Elkelish A, Fouda A (2020) Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10:82. https://doi.org/10.3390/nano10102082 DOI

Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH (2022a) Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 12:893. https://doi.org/10.3390/life12060893 PubMed DOI PMC

Salem SS, Hammad EN, Mohamed AA, El-Dougdoug W (2022b) A comprehensive review of nanomaterials: types, synthesis, characterization, and applications. Biointerface Res Appl Chem 13:41. https://doi.org/10.33263/BRIAC131.041 DOI

Sayed MA, Abo-Aly MM, Aziz AAA, Hassan A, Salem ANM (2021) A facile hydrothermal synthesis of novel CeO DOI

Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308. https://doi.org/10.3390/ma8115377 PubMed DOI PMC

Shar AH, Lakhan MN, Wang J, Ahmed M, Alali KT, Ahmed R, Alali KT, Dayo AQ (2019) Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig J Nanomater Biostructures 14:867–872

Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M (2021) Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater 4:11428–11457. https://doi.org/10.1021/acsanm.1c02946 DOI

Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599. https://doi.org/10.1016/j.tibtech.2016.02.006 PubMed DOI

Skiba MI, Vorobyova VI, Pivovarov A, Makarshenko NP (2020) Green synthesis of silver nanoparticles in the presence of polysaccharide: optimization and characterization. J Nanomater 2020:1–10. https://doi.org/10.1155/2020/3051308 DOI

Sohrabi P, Ghobadi N (2019) Optical and photocatalytic behaviors of iron selenide thin films grown by chemical bath deposition versus deposition time and annealing temperature. Appl Phys A 125:1–11. https://doi.org/10.1007/s00339-019-2919-8 DOI

Soliman MK, Abu-Elghait M, Salem SS, Azab MS (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Conv Bioref 1–18. https://doi.org/10.1007/s13399-022-03507-9

Soliman MK, Salem SS, Abu-Elghait M, Azab MS (2023) Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Appl Biochem Biotech 195:1158–1183. https://doi.org/10.1007/s12010-022-04199-7 DOI

Subhanandaraj T, Raghavan K, Narayanan RAN (2020) Antibacterial and antibiofilm activity of probiotic based silver nanoparticles is a green approach in biomedical applications. Lett Appl NanoBioSci 9(2):988–994. https://doi.org/10.33263/LIANBS92.988994 DOI

Thakare Y, Kore S, Sharma I, Shah M (2022) A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. ESPR 29:55415–55436. https://doi.org/10.1007/s11356-022-20127-y PubMed DOI

Tripathi N, Goshisht MK (2022) Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater 5:1391–1463. https://doi.org/10.1021/acsabm.2c00014 PubMed DOI

Vahdati M, Moghadam TT (2020) Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 10:510. https://doi.org/10.1038/s41598-019-57333-7 PubMed DOI PMC

Yang S, Zhang H, Zhang J, Zhou X (2022) A novel route for preparing Ag DOI

Yasmin N, Liaqat A, Ali G, Kalsoom A, Safdar M, Mirza M (2022) Synthesis and characterization of silver-indium and antimony selenide: role in photocatalytic degradation of dyes. Heliyon 8:e11088. https://doi.org/10.1016/j.heliyon.2022.e11088 PubMed DOI PMC

Yu CL, Fang W, Zhu LH, Zhou WQ, Fan QZ (2015) Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi DOI

Zamanpour N, Esmaeily AM, Mashreghi M, Shahnavaz B, Sharifmoghadam MR, Kompany A (2021) Application of a marine luminescent Vibrio sp. B4L for biosynthesis of silver nanoparticles with unique characteristics, biochemical properties, antibacterial and antibiofilm activities. Bioorg Chem 114:105102. https://doi.org/10.1016/j.bioorg.2021.105102 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...