Preparation and properties of novel binary and ternary highly amorphous poly(vinyl alcohol)-based composites with hybrid nanofillers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No 777810
H2020 Marie Skłodowska-Curie Actions
19-0465
Agentúra na Podporu Výskumu a Vývoja
02/0006/22
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CA19118
European Cooperation in Science and Technology
PubMed
37926746
PubMed Central
PMC10625980
DOI
10.1038/s41598-023-46083-2
PII: 10.1038/s41598-023-46083-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Smart protective coatings and devices are currently of great interest. In particular, they can absorb or reflect harmful waves of electromagnetic interference (EMI). In this work, novel binary and ternary composites with highly amorphous poly(vinyl alcohol) (HAVOH) as a matrix and single-walled carbon nanotubes (SWCNTs) and MXenes as nanofillers were prepared. HAVOH is a recently patented kind of poly(vinyl alcohol) (PVOH) that was modified with diol monomers. MXenes are a new type of inorganic two-dimensional (2D) nanoparticle consisting of carbides, nitrides and carbonitrides. Three series of composites, HAVOH/SWCNTs, HAVOH/MXenes and HAVOH/SWCNTs/MXenes, were prepared using the solvent casting method. Samples were tested with various methods to study their structure, electrical properties, thermal behavior and EMI-shielding properties. HAVOH/3.0 wt.% SWCNTs/3.0 wt.% MXene specimens revealed a shielding effectiveness of 55 dB, which is 122 times better than that of the neat matrix. These results are promising for the fabrication of films with protective effects against EMI.
Faculty of Technology Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
Polymer Institute of Slovak Academy of Sciences Dúbravská cesta 9 845 41 Bratislava Slovakia
SYNPO akciová společnost S K Neumanna 1316 532 07 Pardubice 5 Czech Republic
Zobrazit více v PubMed
Shibutani M, Kanda T, Yamamoto T, Tokumitsu K. Characteristics of the amorphous polyvinyl alcohol resin derivative having side chain 1,2-diol. J. Soc. Mater. Sci. 2017;66(1):23–28. doi: 10.2472/jsms.66.23. DOI
Russo P, et al. Structure and physical properties of high amorphous polyvinyl alcohol/clay composites. AIP Conf. Proc. 2015;1695(1):020035. doi: 10.1063/1.4937313. DOI
Donato KZ, et al. High amorphous vinyl alcohol-silica bionanocomposites: Tuning interface interactions with ionic liquids. ACS Sustain. Chem. Eng. 2017;5:1094–1105. doi: 10.1021/acssuschemeng.6b02379. DOI
Yan N, et al. Gas-barrier hybrid coatings by the assembly of novel poly (vinyl alcohol) and reduced graphene oxide layers through cross-linking with zirconium adducts. ACS Appl. Mater. Interfaces. 2015;7(40):22678–22685. doi: 10.1021/acsami.5b07529. PubMed DOI
Santillo C, et al. Tuning the structural and functional properties of HAVOH-based composites via ionic liquid tailoring of MWCNTs distribution. Compos. Sci. Technol. 2021;207:108742. doi: 10.1016/j.compscitech.2021.108742. DOI
Guadagno L, et al. Flexible eco-friendly multilayer film heaters. Composites B. 2021;224:109208. doi: 10.1016/j.compositesb.2021.109208. DOI
Wang Y-L, et al. Effect of mercapto-silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals. Compos. Sci. Technol. 2020;200:108458. doi: 10.1016/j.compscitech.2020.108458. DOI
Guadagno L, et al. Eco-friendly polymer nanocomposites designed for self-healing applications. Polymer. 2021;223:123718. doi: 10.1016/j.polymer.2021.123718. DOI
Stepura, A. et al. Polymeric nanocomposites with hybrid nanofillers. In EPF European Polymer Congress: 26 June - 1 July 2022: book of abstracts. 1. - Prague, Czech Republic: AMCA, spol. s.r.o., 2022, p. 317. ISBN 978–80–88214–33–5.
Omastová, M. et al. Polymeric nanocomposites with hybrid two- and one-dimensional fillers. In The 6th International conference on nanomaterials: Fundamentals and applications: Book of abstracts. Košice, 16.-19.10.2022. Edited by Jana Shepa; reviewed by Erika Múdra, Ivan Shepa. - Košice: Prírodovedecká fakulta UPJŠ, 2022, pp. 106–107.
Yadav RS, Kuřitka Ivo, Vilčáková J. Advanced spinel ferrite nanocomposites for electromagnetic interference shielding applications. Technol. Eng. Mater. Sci. 2020 doi: 10.1016/C2018-0-05541-3. DOI
Cao M, et al. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C. 2018;6:4586–4602. doi: 10.1039/C7TC05869A. DOI
Naguib M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Yu. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014;26:992–1005. doi: 10.1002/adma.201304138. PubMed DOI
Khaledialidusti R, Anasori B, Barnoush A. Temperature-dependent mechanical properties of Tin+1CnO2 (n = 1, 2) MXene monolayers: A first-principles study. PCCP. 2020;22(6):3414–3424. doi: 10.1039/C9CP06721C. PubMed DOI
Liu R, Li W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega. 2018;3(3):2609–2617. doi: 10.1021/acsomega.7b02001. PubMed DOI PMC
Zeraati ASh, et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13:3572. doi: 10.1039/D0NR06671K. PubMed DOI
Balci E, Akkus UO, Berber S. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C. 2017;5:5956–5961. doi: 10.1039/C7TC01765K. DOI
Han M, et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 2020;142(45):19110–19118. doi: 10.1021/jacs.0c07395. PubMed DOI
Iqbal A, Sambyal P, Koo CM. 2D MXenes for electromagnetic shielding: A review. Adv. Func. Mater. 2020;30:2000883. doi: 10.1002/adfm.202000883. DOI
Zhu Q, Li J, Simon P, Xu B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater. 2021;35:630–660. doi: 10.1016/j.ensm.2020.11.035. DOI
Zhang T-Y, et al. High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos. Commun. 2022;33:101235. doi: 10.1016/j.coco.2022.101235. DOI
Anasori B, Gogotsi Y. Introduction to 2D transition metal carbides and nitrides (MXenes) In: Anasori B, Gogotsi Y, editors. 2D Metal Carbides and Nitrides (MXenes) Springer Nature; 2019. pp. 3–11.
Naguib M, Barsoum MW, Gogotsi Yu. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021;33:2103393. doi: 10.1002/adma.202103393. PubMed DOI
Ma C, Yuan Q, Ma M-G. MXenes for electromagnetic interference (EMI) shielding. In: Khalid M, Grace AN, Arulraj A, Numan A, editors. Fundamental aspects and perspectives of MXenes. Springer; 2022. pp. 219–240.
Qing Y, Zhou W, Luo F, Zhou D. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016;42(14):16412–16416. doi: 10.1016/j.ceramint.2016.07.150. DOI
Cao M-S, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019;359:1265–1302. doi: 10.1016/j.cej.2018.11.051. DOI
Verma R, Thakur P, Chauhan A, Jasrotia R, Thakur A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon. 2023;208:170–190. doi: 10.1016/j.carbon.2023.03.050. DOI
Jasim SA, et al. MXene/metal and polymer nanocomposites: Preparation, properties, and applications. J. Alloys Comp. 2022;917:165404. doi: 10.1016/j.jallcom.2022.165404. DOI
Shahzad F, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) Science. 2016;353(6304):1137–1140. doi: 10.1126/science.aag2421. PubMed DOI
Liu J, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017;29:1702367. doi: 10.1002/adma.201702367. PubMed DOI
Nguyen V-T, Min BK, Yi Y, Kim SJ, Choi C-G. MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020;393:124608. doi: 10.1016/j.cej.2020.124608. DOI
Song P, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. SM&T. 2020;24:e00153. doi: 10.1016/j.susmat.2020.e00153. DOI
Jin X, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020;380:122475. doi: 10.1016/j.cej.2019.122475. DOI
Mičušík M, et al. Aging of 2D MXene nanoparticles in air: An XPS and TEM study. Appl. Surf. Sci. 2023;610:155351. doi: 10.1016/j.apsusc.2022.155351. DOI
Machata P, et al. Wettability of MXene films. J. Colloid Interface Sci. 2022;622:759–768. doi: 10.1016/j.jcis.2022.04.135. PubMed DOI
Bekyarova E, et al. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005;127(16):5990–5995. doi: 10.1021/ja043153l. PubMed DOI
Lau CH, et al. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J. Nanopart. Res. 2008;10:77–88. doi: 10.1007/s11051-008-9376-1. DOI
Logakis A, et al. Indirect methods for the determination of optimal processing conditions in conductive polypropylene/carbon nanotubes composites. Chem. Phys. Let. 2010;498:125–128. doi: 10.1016/j.cplett.2010.08.045. DOI
He P, et al. Tailoring Ti3C2Tx nanosheet to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale. 2019;11(13):6080–6088. doi: 10.1039/C8NR10489A. PubMed DOI
Miao B, et al. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 2023;6:61. doi: 10.1007/s42114-023-00643-2. DOI
Gao Q, et al. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021;4:274–285. doi: 10.1007/s42114-021-00221-4. DOI
Su SP, Xu YH, China PR, Wilkie CA. Thermal degradation of polymer-carbon nanotube composites. In: McNally T, Pötschke P, editors. Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications. Woodhead Publishing; 2011. pp. 482–510.
Yao L, et al. Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. J. Mater. Sci. Mater. Electron. 2021;32:27837–27848. doi: 10.1007/s10854-021-07166-w. DOI
Geng H-Z, et al. Effect of carbon nanotube types in fabricating flexible transparent conducting films. J. Korean Phys. Soc. 2008;53(9(2)):979–985. doi: 10.3938/jkps.53.979. DOI