Preparation and properties of novel binary and ternary highly amorphous poly(vinyl alcohol)-based composites with hybrid nanofillers

. 2023 Nov 05 ; 13 (1) : 19126. [epub] 20231105

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37926746

Grantová podpora
No 777810 H2020 Marie Skłodowska-Curie Actions
19-0465 Agentúra na Podporu Výskumu a Vývoja
02/0006/22 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CA19118 European Cooperation in Science and Technology

Odkazy

PubMed 37926746
PubMed Central PMC10625980
DOI 10.1038/s41598-023-46083-2
PII: 10.1038/s41598-023-46083-2
Knihovny.cz E-zdroje

Smart protective coatings and devices are currently of great interest. In particular, they can absorb or reflect harmful waves of electromagnetic interference (EMI). In this work, novel binary and ternary composites with highly amorphous poly(vinyl alcohol) (HAVOH) as a matrix and single-walled carbon nanotubes (SWCNTs) and MXenes as nanofillers were prepared. HAVOH is a recently patented kind of poly(vinyl alcohol) (PVOH) that was modified with diol monomers. MXenes are a new type of inorganic two-dimensional (2D) nanoparticle consisting of carbides, nitrides and carbonitrides. Three series of composites, HAVOH/SWCNTs, HAVOH/MXenes and HAVOH/SWCNTs/MXenes, were prepared using the solvent casting method. Samples were tested with various methods to study their structure, electrical properties, thermal behavior and EMI-shielding properties. HAVOH/3.0 wt.% SWCNTs/3.0 wt.% MXene specimens revealed a shielding effectiveness of 55 dB, which is 122 times better than that of the neat matrix. These results are promising for the fabrication of films with protective effects against EMI.

Zobrazit více v PubMed

Shibutani M, Kanda T, Yamamoto T, Tokumitsu K. Characteristics of the amorphous polyvinyl alcohol resin derivative having side chain 1,2-diol. J. Soc. Mater. Sci. 2017;66(1):23–28. doi: 10.2472/jsms.66.23. DOI

Russo P, et al. Structure and physical properties of high amorphous polyvinyl alcohol/clay composites. AIP Conf. Proc. 2015;1695(1):020035. doi: 10.1063/1.4937313. DOI

Donato KZ, et al. High amorphous vinyl alcohol-silica bionanocomposites: Tuning interface interactions with ionic liquids. ACS Sustain. Chem. Eng. 2017;5:1094–1105. doi: 10.1021/acssuschemeng.6b02379. DOI

Yan N, et al. Gas-barrier hybrid coatings by the assembly of novel poly (vinyl alcohol) and reduced graphene oxide layers through cross-linking with zirconium adducts. ACS Appl. Mater. Interfaces. 2015;7(40):22678–22685. doi: 10.1021/acsami.5b07529. PubMed DOI

Santillo C, et al. Tuning the structural and functional properties of HAVOH-based composites via ionic liquid tailoring of MWCNTs distribution. Compos. Sci. Technol. 2021;207:108742. doi: 10.1016/j.compscitech.2021.108742. DOI

Guadagno L, et al. Flexible eco-friendly multilayer film heaters. Composites B. 2021;224:109208. doi: 10.1016/j.compositesb.2021.109208. DOI

Wang Y-L, et al. Effect of mercapto-silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals. Compos. Sci. Technol. 2020;200:108458. doi: 10.1016/j.compscitech.2020.108458. DOI

Guadagno L, et al. Eco-friendly polymer nanocomposites designed for self-healing applications. Polymer. 2021;223:123718. doi: 10.1016/j.polymer.2021.123718. DOI

Stepura, A. et al. Polymeric nanocomposites with hybrid nanofillers. In EPF European Polymer Congress: 26 June - 1 July 2022: book of abstracts. 1. - Prague, Czech Republic: AMCA, spol. s.r.o., 2022, p. 317. ISBN 978–80–88214–33–5.

Omastová, M. et al. Polymeric nanocomposites with hybrid two- and one-dimensional fillers. In The 6th International conference on nanomaterials: Fundamentals and applications: Book of abstracts. Košice, 16.-19.10.2022. Edited by Jana Shepa; reviewed by Erika Múdra, Ivan Shepa. - Košice: Prírodovedecká fakulta UPJŠ, 2022, pp. 106–107.

Yadav RS, Kuřitka Ivo, Vilčáková J. Advanced spinel ferrite nanocomposites for electromagnetic interference shielding applications. Technol. Eng. Mater. Sci. 2020 doi: 10.1016/C2018-0-05541-3. DOI

Cao M, et al. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C. 2018;6:4586–4602. doi: 10.1039/C7TC05869A. DOI

Naguib M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Yu. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014;26:992–1005. doi: 10.1002/adma.201304138. PubMed DOI

Khaledialidusti R, Anasori B, Barnoush A. Temperature-dependent mechanical properties of Tin+1CnO2 (n = 1, 2) MXene monolayers: A first-principles study. PCCP. 2020;22(6):3414–3424. doi: 10.1039/C9CP06721C. PubMed DOI

Liu R, Li W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega. 2018;3(3):2609–2617. doi: 10.1021/acsomega.7b02001. PubMed DOI PMC

Zeraati ASh, et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13:3572. doi: 10.1039/D0NR06671K. PubMed DOI

Balci E, Akkus UO, Berber S. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C. 2017;5:5956–5961. doi: 10.1039/C7TC01765K. DOI

Han M, et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 2020;142(45):19110–19118. doi: 10.1021/jacs.0c07395. PubMed DOI

Iqbal A, Sambyal P, Koo CM. 2D MXenes for electromagnetic shielding: A review. Adv. Func. Mater. 2020;30:2000883. doi: 10.1002/adfm.202000883. DOI

Zhu Q, Li J, Simon P, Xu B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater. 2021;35:630–660. doi: 10.1016/j.ensm.2020.11.035. DOI

Zhang T-Y, et al. High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos. Commun. 2022;33:101235. doi: 10.1016/j.coco.2022.101235. DOI

Anasori B, Gogotsi Y. Introduction to 2D transition metal carbides and nitrides (MXenes) In: Anasori B, Gogotsi Y, editors. 2D Metal Carbides and Nitrides (MXenes) Springer Nature; 2019. pp. 3–11.

Naguib M, Barsoum MW, Gogotsi Yu. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021;33:2103393. doi: 10.1002/adma.202103393. PubMed DOI

Ma C, Yuan Q, Ma M-G. MXenes for electromagnetic interference (EMI) shielding. In: Khalid M, Grace AN, Arulraj A, Numan A, editors. Fundamental aspects and perspectives of MXenes. Springer; 2022. pp. 219–240.

Qing Y, Zhou W, Luo F, Zhou D. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016;42(14):16412–16416. doi: 10.1016/j.ceramint.2016.07.150. DOI

Cao M-S, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019;359:1265–1302. doi: 10.1016/j.cej.2018.11.051. DOI

Verma R, Thakur P, Chauhan A, Jasrotia R, Thakur A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon. 2023;208:170–190. doi: 10.1016/j.carbon.2023.03.050. DOI

Jasim SA, et al. MXene/metal and polymer nanocomposites: Preparation, properties, and applications. J. Alloys Comp. 2022;917:165404. doi: 10.1016/j.jallcom.2022.165404. DOI

Shahzad F, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) Science. 2016;353(6304):1137–1140. doi: 10.1126/science.aag2421. PubMed DOI

Liu J, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017;29:1702367. doi: 10.1002/adma.201702367. PubMed DOI

Nguyen V-T, Min BK, Yi Y, Kim SJ, Choi C-G. MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020;393:124608. doi: 10.1016/j.cej.2020.124608. DOI

Song P, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. SM&T. 2020;24:e00153. doi: 10.1016/j.susmat.2020.e00153. DOI

Jin X, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020;380:122475. doi: 10.1016/j.cej.2019.122475. DOI

Mičušík M, et al. Aging of 2D MXene nanoparticles in air: An XPS and TEM study. Appl. Surf. Sci. 2023;610:155351. doi: 10.1016/j.apsusc.2022.155351. DOI

Machata P, et al. Wettability of MXene films. J. Colloid Interface Sci. 2022;622:759–768. doi: 10.1016/j.jcis.2022.04.135. PubMed DOI

Bekyarova E, et al. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005;127(16):5990–5995. doi: 10.1021/ja043153l. PubMed DOI

Lau CH, et al. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J. Nanopart. Res. 2008;10:77–88. doi: 10.1007/s11051-008-9376-1. DOI

Logakis A, et al. Indirect methods for the determination of optimal processing conditions in conductive polypropylene/carbon nanotubes composites. Chem. Phys. Let. 2010;498:125–128. doi: 10.1016/j.cplett.2010.08.045. DOI

He P, et al. Tailoring Ti3C2Tx nanosheet to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale. 2019;11(13):6080–6088. doi: 10.1039/C8NR10489A. PubMed DOI

Miao B, et al. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 2023;6:61. doi: 10.1007/s42114-023-00643-2. DOI

Gao Q, et al. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021;4:274–285. doi: 10.1007/s42114-021-00221-4. DOI

Su SP, Xu YH, China PR, Wilkie CA. Thermal degradation of polymer-carbon nanotube composites. In: McNally T, Pötschke P, editors. Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications. Woodhead Publishing; 2011. pp. 482–510.

Yao L, et al. Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. J. Mater. Sci. Mater. Electron. 2021;32:27837–27848. doi: 10.1007/s10854-021-07166-w. DOI

Geng H-Z, et al. Effect of carbon nanotube types in fabricating flexible transparent conducting films. J. Korean Phys. Soc. 2008;53(9(2)):979–985. doi: 10.3938/jkps.53.979. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...