The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions

. 2017 Oct 30 ; 9 (11) : . [epub] 20171030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29084179

Interaction of flavonoids with transition metals can be partially responsible for their impact on humans. Stoichiometry of the iron/copper complex with a flavonoid glycoside isoquercitrin, a frequent component of food supplements, was assessed using competitive and non-competitive methods in four (patho)physiologically-relevant pH values (4.5. 5.5, 6.8, and 7.5). Isoquercitrin chelated all tested ions (Fe2+, Fe3+, Cu2+, and Cu⁺) but its affinity for Cu⁺ ions proved to be very low. In general, the chelation potency dropped with pH lowering. Metal complexes of 1:1 stoichiometry were mostly formed, however, they were not stable and the stoichiometry changed depending on conditions. Isoquercitrin was able to reduce both Cu2+ and Fe3+ ions at low ratios, but its reducing potential was diminished at higher ratios (isoquercitrin to metal) due to the metal chelation. In conclusion, this study emphasizes the need of using multiple different methods for the assessment of chelation potential in moderately-active metal chelators, like flavonoids.

Zobrazit více v PubMed

Valentova K., Vrba J., Bancirova M., Ulrichova J., Kren V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI

Wang W.Y., Sun C.X., Mao L.K., Ma P.H., Liu F.G., Yang J., Gao Y.X. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016;56:21–38. doi: 10.1016/j.tifs.2016.07.004. DOI

Li R., Yuan C., Dong C., Shuang S., Choi M.M. In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn Schmied. Arch. Pharmacol. 2011;383:437–445. doi: 10.1007/s00210-011-0613-2. PubMed DOI

Morikawa K., Nonaka M., Narahara M., Torii I., Kawaguchi K., Yoshikawa T., Kumazawa Y., Morikawa S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci. 2003;74:709–721. doi: 10.1016/j.lfs.2003.06.036. PubMed DOI

Fujii Y., Kimura M., Ishii Y., Yamamoto R., Morita R., Hayashi S.M., Suzuki K., Shibutani M. Effect of enzymatically modified isoquercitrin on preneoplastic liver cell lesions induced by thioacetamide promotion in a two-stage hepatocarcinogenesis model using rats. Toxicology. 2013;305:30–40. doi: 10.1016/j.tox.2013.01.002. PubMed DOI

Gasparotto A., Jr., Gasparotto F.M., Lourenco E.L., Crestani S., Stefanello M.E., Salvador M.J., da Silva-Santos J.E., Marques M.C., Kassuya C.A. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J. Ethnopharmacol. 2011;134:363–372. doi: 10.1016/j.jep.2010.12.026. PubMed DOI

Panda S., Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors. 2007;31:201–210. doi: 10.1002/biof.5520310307. PubMed DOI

Rogerio A.P., Kanashiro A., Fontanari C., da Silva E.V.G., Lucisano-Valim Y.M., Soares E.G., Faccioli L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007;56:402–408. doi: 10.1007/s00011-007-7005-6. PubMed DOI

Loscalzo L.M., Wasowski C., Marder M. Neuroactive flavonoid glycosides from Tilia petiolaris DC. extracts. Phytother. Res. 2009;23:1453–1457. doi: 10.1002/ptr.2800. PubMed DOI

Paulke A., Eckert G.P., Schubert-Zsilavecz M., Wurglics M. Isoquercitrin provides better bioavailability than quercetin: Comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie. 2012;67:991–996. doi: 10.1691/ph.2012.2050. PubMed DOI

He J., Feng Y., Ouyang H., Yu B., Chang Y., Pan G., Dong G., Wang T., Gao X. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 2013;84:189–195. doi: 10.1016/j.jpba.2013.06.019. PubMed DOI

Zhou C., Liu Y., Su D., Gao G., Zhou X., Sun L., Ba X., Chen X., Bi K. A sensitive LC-MS-MS method for simultaneous quantification of two structural isomers, hyperoside and isoquercitrin: Application to pharmacokinetic studies. Chromatographia. 2011;73:353–359. doi: 10.1007/s10337-010-1879-0. DOI

Li J., Wang Z.W., Zhang L., Liu X., Chen X.H., Bi K.S. HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum Thunb. extract. Biomed. Chromatogr. 2008;22:374–378. doi: 10.1002/bmc.942. PubMed DOI

Xue C., Guo J., Qian D., Duan J.A., Shang E., Shu Y., Lu Y. Identification of the potential active components of Abelmoschus manihot in rat blood and kidney tissue by microdialysis combined with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:317–325. doi: 10.1016/j.jchromb.2010.12.016. PubMed DOI

Guo J., Xue C., Duan J.A., Qian D., Tang Y., You Y. Anticonvulsant, antidepressant-like activity of Abelmoschus manihot ethanol extract and its potential active components in vivo. Phytomedicine. 2011;18:1250–1254. doi: 10.1016/j.phymed.2011.06.012. PubMed DOI

Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024. PubMed DOI PMC

Gerstorferova D., Fliedrova B., Halada P., Marhol P., Kren V., Weignerova L. Recombinant a-l-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochem. 2012;47:828–835. doi: 10.1016/j.procbio.2012.02.014. DOI

Monti D., Pisvejcova A., Kren V., Lama M., Riva S. Generation of an α-l-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004;87:763–771. doi: 10.1002/bit.20187. PubMed DOI

Kong C.S., Kim Y.A., Kim M.M., Park J.S., Kim J.A., Kim S.K., Lee B.J., Nam T.J., Seo Y. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. In Vitro. 2008;22:1742–1748. doi: 10.1016/j.tiv.2008.07.013. PubMed DOI

Salucci M., Stivala L.A., Maiani G., Bugianesi R., Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2) Br. J. Cancer. 2002;86:1645–1651. doi: 10.1038/sj.bjc.6600295. PubMed DOI PMC

Nugroho A., Kim E.J., Choi J.S., Park H.J. Simultaneous quantification and peroxynitrite-scavenging activities of flavonoids in Polygonum aviculare L. herb. J. Pharm. Biomed. Anal. 2014;89:93–98. doi: 10.1016/j.jpba.2013.10.037. PubMed DOI

Cornard J.P., Merlin J.C. Complexes of aluminium(III) with isoquercitrin: Spectroscopic characterization and quantum chemical calculations. Polyhedron. 2002;21:2801–2810. doi: 10.1016/S0277-5387(02)01288-3. DOI

Li X.C., Jiang Q., Wang T.T., Liu J.J., Chen D.F. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6′′-OH Group. Molecules. 2016;21:1246. doi: 10.3390/molecules21091246. PubMed DOI PMC

Murota K., Mitsukuni Y., Ichikawa M., Tsushida T., Miyamoto S., Terao J. Quercetin-4′-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J. Agric. Food. Chem. 2004;52:1907–1912. doi: 10.1021/jf035151a. PubMed DOI

Macakova K., Mladenka P., Filipsky T., Riha M., Jahodar L., Trejtnar F., Bovicelli P., Proietti Silvestri I., Hrdina R., Saso L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 2012;135:2584–2592. doi: 10.1016/j.foodchem.2012.06.107. PubMed DOI

Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI

Kuo S.M., Leavitt P.S., Lin C.P. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol. Trace Elem. Res. 1998;62:135–153. doi: 10.1007/BF02783967. PubMed DOI

Riha M., Karlickova J., Filipsky T., Macakova K., Rocha L., Bovicelli P., Silvestri I.P., Saso L., Jahodar L., Hrdina R., et al. In vitro evaluation of copper-chelating properties of flavonoids. RSC Adv. 2014;4:32628–32638. doi: 10.1039/C4RA04575K. DOI

Ahmad M.S., Fazal F., Rahman A., Hadi S.M., Parish J.H. Activities of flavonoids for the cleavage of DNA in the presence of Cu(II)—Correlation with generation of active oxygen species. Carcinogenesis. 1992;13:605–608. doi: 10.1093/carcin/13.4.605. PubMed DOI

Rahman A., Shahabuddin, Hadi S.M., Parish J.H. Complexes involving quercetin, DNA and Cu(II) Carcinogenesis. 1990;11:2001–2003. doi: 10.1093/carcin/11.11.2001. PubMed DOI

Mira L., Fernandez M.T., Santos M., Rocha R., Florencio M.H., Jennings K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002;36:1199–1208. doi: 10.1080/1071576021000016463. PubMed DOI

Filipsky T., Riha M., Hrdina R., Vavrova K., Mladenka P. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry. Bioorg. Chem. 2013;49:1–8. doi: 10.1016/j.bioorg.2013.06.002. PubMed DOI

Kasprzak M.M., Erxleben A., Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5:45853–45877. doi: 10.1039/C5RA05069C. DOI

Markovic J.M.D., Markovic Z.S., Brdaric T.P., Pavelkic V.M., Jadranin M.B. Iron complexes of dietary flavonoids: Combined spectroscopic and mechanistic study of their free radical scavenging activity. Food Chem. 2011;129:1567–1577. doi: 10.1016/j.foodchem.2011.06.008. DOI

Job P. Recherches sur la formation des complexes mineraux en solution, et sur leur stabilité. Ann. Chim. 1928;9:113–134.

Mladenka P., Macakova K., Zatloukalova L., Rehakova Z., Singh B.K., Prasad A.K., Parmar V.S., Jahodar L., Hrdina R., Saso L. In vitro interactions of coumarins with iron. Biochimie. 2010;92:1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI

Riha M., Karlickova J., Filipsky T., Macakova K., Hrdina R., Mladenka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J. Inorg. Biochem. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI

Fernandes I., Pérez-Gregorio R., Soares S., Mateus N., de Freitas V. Wine flavonoids in health and disease prevention. Molecules. 2017;22:292. doi: 10.3390/molecules22020292. PubMed DOI PMC

Lovegrove J.A., Stainer A., Hobbs D.A. Role of flavonoids and nitrates in cardiovascular health. Proc. Nutr. Soc. 2017:1–13. doi: 10.1017/S0029665116002871. PubMed DOI

Mladenka P., Macakova K., Filipsky T., Zatloukalova L., Jahodar L., Bovicelli P., Silvestri I.P., Hrdina R., Saso L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011;105:693–701. doi: 10.1016/j.jinorgbio.2011.02.003. PubMed DOI

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI

De Souza R.F.V., Sussuchi E.M., De Giovani W.F. Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synth. React. Inorg. Met. 2003;33:1125–1144. doi: 10.1081/SIM-120023482. DOI

Guo M.L., Perez C., Wei Y.B., Rapoza E., Su G., Bou-Abdallah F., Chasteen N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007:4951–4961. doi: 10.1039/b705136k. PubMed DOI PMC

Harris D.C., Aisen P. Facilitation of Fe(II) Autoxidation by Fe(III) complexing agents. Biochim. Biophys. Acta. 1973;329:156–158. doi: 10.1016/0304-4165(73)90019-6. PubMed DOI

Hasumura M., Yasuhara K., Tamura T., Imai T., Mitsumori K., Hirose M. Evaluation of the toxicity of enzymatically decomposed rutin with 13-weeks dietary administration to Wistar rats. Food Chem. Toxicol. 2004;42:439–444. doi: 10.1016/j.fct.2003.10.006. PubMed DOI

Brune M., Rossander L., Hallberg L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 1989;43:547–557. PubMed

Brewer G.J., Yuzbasiyangurkan V., Dick R., Wang Y.X., Johnson V. Does a vegetarian diet control Wilsons-disease. J. Am. Coll. Nutr. 1993;12:527–530. doi: 10.1080/07315724.1993.10718347. PubMed DOI

Biler M., Biedermann D., Valentova K., Kren V., Kubala M. Quercetin and its analogues: Optical and acido-basic properties. Phys. Chem. Chem. Phys. 2017;19:26870–26879. doi: 10.1039/C7CP03845C. PubMed DOI

Arts I.C., Sesink A.L., Faassen-Peters M., Hollman P.C. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 2004;91:841–847. doi: 10.1079/BJN20041123. PubMed DOI

Makino T., Shimizu R., Kanemaru M., Suzuki Y., Moriwaki M., Mizukami H. Enzymatically modified isoquercitrin, α-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 2009;32:2034–2040. doi: 10.1248/bpb.32.2034. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...