The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29084179
PubMed Central
PMC5707665
DOI
10.3390/nu9111193
PII: nu9111193
Knihovny.cz E-zdroje
- Klíčová slova
- Job’s method, chelator, copper, iron, quercetin-3-O-β-glucopyranoside, reduction, stoichiometry,
- MeSH
- chelátory chemie MeSH
- flavonoidy chemie MeSH
- koncentrace vodíkových iontů MeSH
- měď chemie MeSH
- quercetin analogy a deriváty chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory MeSH
- flavonoidy MeSH
- isoquercitrin MeSH Prohlížeč
- měď MeSH
- quercetin MeSH
- železo MeSH
Interaction of flavonoids with transition metals can be partially responsible for their impact on humans. Stoichiometry of the iron/copper complex with a flavonoid glycoside isoquercitrin, a frequent component of food supplements, was assessed using competitive and non-competitive methods in four (patho)physiologically-relevant pH values (4.5. 5.5, 6.8, and 7.5). Isoquercitrin chelated all tested ions (Fe2+, Fe3+, Cu2+, and Cu⁺) but its affinity for Cu⁺ ions proved to be very low. In general, the chelation potency dropped with pH lowering. Metal complexes of 1:1 stoichiometry were mostly formed, however, they were not stable and the stoichiometry changed depending on conditions. Isoquercitrin was able to reduce both Cu2+ and Fe3+ ions at low ratios, but its reducing potential was diminished at higher ratios (isoquercitrin to metal) due to the metal chelation. In conclusion, this study emphasizes the need of using multiple different methods for the assessment of chelation potential in moderately-active metal chelators, like flavonoids.
Zobrazit více v PubMed
Valentova K., Vrba J., Bancirova M., Ulrichova J., Kren V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI
Wang W.Y., Sun C.X., Mao L.K., Ma P.H., Liu F.G., Yang J., Gao Y.X. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016;56:21–38. doi: 10.1016/j.tifs.2016.07.004. DOI
Li R., Yuan C., Dong C., Shuang S., Choi M.M. In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn Schmied. Arch. Pharmacol. 2011;383:437–445. doi: 10.1007/s00210-011-0613-2. PubMed DOI
Morikawa K., Nonaka M., Narahara M., Torii I., Kawaguchi K., Yoshikawa T., Kumazawa Y., Morikawa S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci. 2003;74:709–721. doi: 10.1016/j.lfs.2003.06.036. PubMed DOI
Fujii Y., Kimura M., Ishii Y., Yamamoto R., Morita R., Hayashi S.M., Suzuki K., Shibutani M. Effect of enzymatically modified isoquercitrin on preneoplastic liver cell lesions induced by thioacetamide promotion in a two-stage hepatocarcinogenesis model using rats. Toxicology. 2013;305:30–40. doi: 10.1016/j.tox.2013.01.002. PubMed DOI
Gasparotto A., Jr., Gasparotto F.M., Lourenco E.L., Crestani S., Stefanello M.E., Salvador M.J., da Silva-Santos J.E., Marques M.C., Kassuya C.A. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J. Ethnopharmacol. 2011;134:363–372. doi: 10.1016/j.jep.2010.12.026. PubMed DOI
Panda S., Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors. 2007;31:201–210. doi: 10.1002/biof.5520310307. PubMed DOI
Rogerio A.P., Kanashiro A., Fontanari C., da Silva E.V.G., Lucisano-Valim Y.M., Soares E.G., Faccioli L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007;56:402–408. doi: 10.1007/s00011-007-7005-6. PubMed DOI
Loscalzo L.M., Wasowski C., Marder M. Neuroactive flavonoid glycosides from Tilia petiolaris DC. extracts. Phytother. Res. 2009;23:1453–1457. doi: 10.1002/ptr.2800. PubMed DOI
Paulke A., Eckert G.P., Schubert-Zsilavecz M., Wurglics M. Isoquercitrin provides better bioavailability than quercetin: Comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie. 2012;67:991–996. doi: 10.1691/ph.2012.2050. PubMed DOI
He J., Feng Y., Ouyang H., Yu B., Chang Y., Pan G., Dong G., Wang T., Gao X. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 2013;84:189–195. doi: 10.1016/j.jpba.2013.06.019. PubMed DOI
Zhou C., Liu Y., Su D., Gao G., Zhou X., Sun L., Ba X., Chen X., Bi K. A sensitive LC-MS-MS method for simultaneous quantification of two structural isomers, hyperoside and isoquercitrin: Application to pharmacokinetic studies. Chromatographia. 2011;73:353–359. doi: 10.1007/s10337-010-1879-0. DOI
Li J., Wang Z.W., Zhang L., Liu X., Chen X.H., Bi K.S. HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum Thunb. extract. Biomed. Chromatogr. 2008;22:374–378. doi: 10.1002/bmc.942. PubMed DOI
Xue C., Guo J., Qian D., Duan J.A., Shang E., Shu Y., Lu Y. Identification of the potential active components of Abelmoschus manihot in rat blood and kidney tissue by microdialysis combined with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:317–325. doi: 10.1016/j.jchromb.2010.12.016. PubMed DOI
Guo J., Xue C., Duan J.A., Qian D., Tang Y., You Y. Anticonvulsant, antidepressant-like activity of Abelmoschus manihot ethanol extract and its potential active components in vivo. Phytomedicine. 2011;18:1250–1254. doi: 10.1016/j.phymed.2011.06.012. PubMed DOI
Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024. PubMed DOI PMC
Gerstorferova D., Fliedrova B., Halada P., Marhol P., Kren V., Weignerova L. Recombinant a-l-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochem. 2012;47:828–835. doi: 10.1016/j.procbio.2012.02.014. DOI
Monti D., Pisvejcova A., Kren V., Lama M., Riva S. Generation of an α-l-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004;87:763–771. doi: 10.1002/bit.20187. PubMed DOI
Kong C.S., Kim Y.A., Kim M.M., Park J.S., Kim J.A., Kim S.K., Lee B.J., Nam T.J., Seo Y. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. In Vitro. 2008;22:1742–1748. doi: 10.1016/j.tiv.2008.07.013. PubMed DOI
Salucci M., Stivala L.A., Maiani G., Bugianesi R., Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2) Br. J. Cancer. 2002;86:1645–1651. doi: 10.1038/sj.bjc.6600295. PubMed DOI PMC
Nugroho A., Kim E.J., Choi J.S., Park H.J. Simultaneous quantification and peroxynitrite-scavenging activities of flavonoids in Polygonum aviculare L. herb. J. Pharm. Biomed. Anal. 2014;89:93–98. doi: 10.1016/j.jpba.2013.10.037. PubMed DOI
Cornard J.P., Merlin J.C. Complexes of aluminium(III) with isoquercitrin: Spectroscopic characterization and quantum chemical calculations. Polyhedron. 2002;21:2801–2810. doi: 10.1016/S0277-5387(02)01288-3. DOI
Li X.C., Jiang Q., Wang T.T., Liu J.J., Chen D.F. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6′′-OH Group. Molecules. 2016;21:1246. doi: 10.3390/molecules21091246. PubMed DOI PMC
Murota K., Mitsukuni Y., Ichikawa M., Tsushida T., Miyamoto S., Terao J. Quercetin-4′-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J. Agric. Food. Chem. 2004;52:1907–1912. doi: 10.1021/jf035151a. PubMed DOI
Macakova K., Mladenka P., Filipsky T., Riha M., Jahodar L., Trejtnar F., Bovicelli P., Proietti Silvestri I., Hrdina R., Saso L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 2012;135:2584–2592. doi: 10.1016/j.foodchem.2012.06.107. PubMed DOI
Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI
Kuo S.M., Leavitt P.S., Lin C.P. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol. Trace Elem. Res. 1998;62:135–153. doi: 10.1007/BF02783967. PubMed DOI
Riha M., Karlickova J., Filipsky T., Macakova K., Rocha L., Bovicelli P., Silvestri I.P., Saso L., Jahodar L., Hrdina R., et al. In vitro evaluation of copper-chelating properties of flavonoids. RSC Adv. 2014;4:32628–32638. doi: 10.1039/C4RA04575K. DOI
Ahmad M.S., Fazal F., Rahman A., Hadi S.M., Parish J.H. Activities of flavonoids for the cleavage of DNA in the presence of Cu(II)—Correlation with generation of active oxygen species. Carcinogenesis. 1992;13:605–608. doi: 10.1093/carcin/13.4.605. PubMed DOI
Rahman A., Shahabuddin, Hadi S.M., Parish J.H. Complexes involving quercetin, DNA and Cu(II) Carcinogenesis. 1990;11:2001–2003. doi: 10.1093/carcin/11.11.2001. PubMed DOI
Mira L., Fernandez M.T., Santos M., Rocha R., Florencio M.H., Jennings K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002;36:1199–1208. doi: 10.1080/1071576021000016463. PubMed DOI
Filipsky T., Riha M., Hrdina R., Vavrova K., Mladenka P. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry. Bioorg. Chem. 2013;49:1–8. doi: 10.1016/j.bioorg.2013.06.002. PubMed DOI
Kasprzak M.M., Erxleben A., Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5:45853–45877. doi: 10.1039/C5RA05069C. DOI
Markovic J.M.D., Markovic Z.S., Brdaric T.P., Pavelkic V.M., Jadranin M.B. Iron complexes of dietary flavonoids: Combined spectroscopic and mechanistic study of their free radical scavenging activity. Food Chem. 2011;129:1567–1577. doi: 10.1016/j.foodchem.2011.06.008. DOI
Job P. Recherches sur la formation des complexes mineraux en solution, et sur leur stabilité. Ann. Chim. 1928;9:113–134.
Mladenka P., Macakova K., Zatloukalova L., Rehakova Z., Singh B.K., Prasad A.K., Parmar V.S., Jahodar L., Hrdina R., Saso L. In vitro interactions of coumarins with iron. Biochimie. 2010;92:1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI
Riha M., Karlickova J., Filipsky T., Macakova K., Hrdina R., Mladenka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J. Inorg. Biochem. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI
Fernandes I., Pérez-Gregorio R., Soares S., Mateus N., de Freitas V. Wine flavonoids in health and disease prevention. Molecules. 2017;22:292. doi: 10.3390/molecules22020292. PubMed DOI PMC
Lovegrove J.A., Stainer A., Hobbs D.A. Role of flavonoids and nitrates in cardiovascular health. Proc. Nutr. Soc. 2017:1–13. doi: 10.1017/S0029665116002871. PubMed DOI
Mladenka P., Macakova K., Filipsky T., Zatloukalova L., Jahodar L., Bovicelli P., Silvestri I.P., Hrdina R., Saso L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011;105:693–701. doi: 10.1016/j.jinorgbio.2011.02.003. PubMed DOI
Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI
De Souza R.F.V., Sussuchi E.M., De Giovani W.F. Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synth. React. Inorg. Met. 2003;33:1125–1144. doi: 10.1081/SIM-120023482. DOI
Guo M.L., Perez C., Wei Y.B., Rapoza E., Su G., Bou-Abdallah F., Chasteen N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007:4951–4961. doi: 10.1039/b705136k. PubMed DOI PMC
Harris D.C., Aisen P. Facilitation of Fe(II) Autoxidation by Fe(III) complexing agents. Biochim. Biophys. Acta. 1973;329:156–158. doi: 10.1016/0304-4165(73)90019-6. PubMed DOI
Hasumura M., Yasuhara K., Tamura T., Imai T., Mitsumori K., Hirose M. Evaluation of the toxicity of enzymatically decomposed rutin with 13-weeks dietary administration to Wistar rats. Food Chem. Toxicol. 2004;42:439–444. doi: 10.1016/j.fct.2003.10.006. PubMed DOI
Brune M., Rossander L., Hallberg L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 1989;43:547–557. PubMed
Brewer G.J., Yuzbasiyangurkan V., Dick R., Wang Y.X., Johnson V. Does a vegetarian diet control Wilsons-disease. J. Am. Coll. Nutr. 1993;12:527–530. doi: 10.1080/07315724.1993.10718347. PubMed DOI
Biler M., Biedermann D., Valentova K., Kren V., Kubala M. Quercetin and its analogues: Optical and acido-basic properties. Phys. Chem. Chem. Phys. 2017;19:26870–26879. doi: 10.1039/C7CP03845C. PubMed DOI
Arts I.C., Sesink A.L., Faassen-Peters M., Hollman P.C. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 2004;91:841–847. doi: 10.1079/BJN20041123. PubMed DOI
Makino T., Shimizu R., Kanemaru M., Suzuki Y., Moriwaki M., Mizukami H. Enzymatically modified isoquercitrin, α-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 2009;32:2034–2040. doi: 10.1248/bpb.32.2034. PubMed DOI