The Concentration of Memantine in the Cerebrospinal Fluid of Alzheimer's Disease Patients and Its Consequence to Oxidative Stress Biomarkers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31555132
PubMed Central
PMC6722429
DOI
10.3389/fphar.2019.00943
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, biomarkers, cerebrospinal fluid concentrations, clinical study, memantine, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist utilized as a palliative cure for Alzheimer's disease. This is the second study examining the memantine concentrations in cerebrospinal fluid. The previously published study enrolled six patients, and three of them were theoretically in a steady state. In our study, we enrolled 22 patients who regularly used a standard therapeutic dose of memantine (20 mg/day, oral administration) before the sample collection. Patients were divided into four groups, according to the time of plasma and cerebrospinal fluid collection: 6, 12, 18, and 24 h after memantine administration. The cerebrospinal fluid samples were also assessed for selected oxidative stress parameters (malondialdehyde, 3-nitrotyrosine, glutathione, non-protein thiols, and non-protein disulfides). The plasma/cerebrospinal fluid (CSF) ratio for all time intervals were within the range of 45.89% (6 h) to 55.60% (18 h), which corresponds with previously published findings in most patients. The other aim of our study was to deduce whether the achieved "real" memantine concentration in the central compartment was sufficient to block NMDA receptors. The IC50 value of memantine as an NMDA antagonist is in micromolar range; the lowest limit is 112 ng/ml (GluN2C), and this value was achieved only in three cases. The memantine cerebrospinal fluid concentration did not reach one quarter of the IC50 value in five cases (one patient was excluded for noncompliance); therefore, the potency of memantine as a therapeutic effect in patients may be questionable. However, it appears that memantine therapy positively affected the levels of some oxidative stress parameters, especially non-protein thiols and 3-nitrotyrosine.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czechia
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Abe T., Tohgi H., Isobe C., Murata T., Sato C. (2002). Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J. Neurosci. Res. 70, 447–450. 10.1002/jnr.10349 PubMed DOI
Ahmed N., Ahmed U., Thornalley P. J., Hager K., Fleischer G., Munch G. (2005). Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem. 92, 255–263. 10.1111/j.1471-4159.2004.02864.x PubMed DOI
Aoyama K., Matsubara K., Fujikawa Y., Nagahiro Y., Shimizu K., Umegae N., et al. (2000). Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann. Neurol. 47, 524–527. 10.1002/1531-8249(200004)47:4<524::AID-ANA19>3.0.CO;2-5 PubMed DOI
Arlt S., Beisiegel U., Kontush A. (2002). Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr. Opin. Lipidol. 13, 289–294. 10.1097/00041433-200206000-00009 PubMed DOI
Butterfield D. A., Drake J., Pocernich C., Castegna A. (2001). Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7, 548–554. 10.1016/S1471-4914(01)02173-6 PubMed DOI
Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. (2017). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox. Biol. 14, 450–464. 10.1016/j.redox.2017.10.014 PubMed DOI PMC
Ciarimboli G. (2011). Role of organic cation transporters in drug-induced toxicity. Expert Opin. Drug Metab. Toxicol. 7, 159–174. 10.1517/17425255.2011.547474 PubMed DOI
De Felice F. G., Velasco P. T., Lambert M. P., Viola K., Fernandez S. J., Ferreira S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem. 282, 11590–11601. 10.1074/jbc.M607483200 PubMed DOI
FDA (2003). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-487_Namenda_Bioeqr_P2.pdf (Accessed October 16, 2003).
Fonseca-Santos B., Gremiao M. P. D., Chorilli M. (2015). Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine. 10, 4981–5003. 10.2147/IJN.S87148 PubMed DOI PMC
Freudenthaler S., Meineke I., Schreeb K. H., Boakye E., Gundert-Remy U., Gleiter C. H. (1998). Influence of urine pH and urinary flow on the renal excretion of memantine. Br. J. Clin. Pharmacol. 46, 541–546. 10.1046/j.1365-2125.1998.00819.x PubMed DOI PMC
Gumusyayla S., Vural G., Bektas H., Deniz O., Neselioglu S., Erel O. (2016). A novel oxidative stress marker in patients with Alzheimer’s disease: dynamic thiol–disulphide homeostasis. Acta. Neuropsychiatry 28, 315–320. 10.1017/neu.2016.13 PubMed DOI
Honegger U. E., Quack G., Wiesmann U. N. (1993). Evidence for lysosomotropism of memantine in cultured human cells: cellular kinetics and effects of memantine on phospholipid content and composition, membrane fluidity and beta-adrenergic transmission. Pharmacol. Toxicol. 73, 202–208. 10.1111/j.1600-0773.1993.tb01564.x PubMed DOI
Hort J., O’Brien J. T., Gainotti G., Pirttila T., Popescu B. O., Rektorova I., et al. (2010). EFNS guidelines for the diagnosis and management of Alzheimer’s disease. Eur. J. Neurol. 17, 1236–1248. 10.1111/j.1468-1331.2010.03040.x PubMed DOI
Huang W. J., Zhang X., Chen W. W. (2016). Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 4, 519–522. 10.3892/br.2016.630 PubMed DOI PMC
Jiang J., Jiang H. (2015). Efficacy and adverse effects of memantine treatment for Alzheimer’s disease from randomized controlled trials. Neurol. Sci. 36, 1633–1641. 10.1007/s10072-015-2221-2 PubMed DOI
Jimenez-Jimenez F. J., de Bustos F., Molina J. A., Benito-Leon J., Tallon-Barranco A., Gasalla T., et al. (1997). Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer’s disease. J. Neural Transm. 104, 703–710. 10.1007/BF01291887 PubMed DOI
Kamat P. K., Kalani A., Rai S., Swarnkar S., Tota S., Nath C., et al. (2016). Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol. Neurobiol. 53, 648–661. 10.1007/s12035-014-9053-6 PubMed DOI PMC
Klimova B., Maresova P., Kuca K. (2016). Non-pharmacological approaches to the prevention and treatment of Alzheimer’s disease with respect to the rising treatment costs. Curr. Alzheimer Res. 13, 1249–1258. 10.2174/1567205013666151116142302 PubMed DOI
Klimova B., Valis M., Kuca K. (2017). Cognitive decline in normal aging and its prevention: a review on non-pharmacological lifestyle strategies. Clin, Interv. Aging 12, 903–910. 10.2147/CIA.S132963 PubMed DOI PMC
Kornhuber J., Kennepohl E. M., Bleich S., Wiltfang J., Kraus T., Reulbach U., et al. (2007). Memantine pharmacotherapy. Clin. Pharmacokinet. 46, 599–612. 10.2165/00003088-200746070-00005 PubMed DOI
Kornhuber J., Quack G. (1995). Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man. Neurosci. Lett. 195, 137–139. 10.1016/0304-3940(95)11785-U PubMed DOI
Korolainen M. A., Pirttila T. (2009). Cerebrospinal fluid, serum and plasma protein oxidation in Alzheimer’s disease. Acta. Neurol. Scand. 119, 32–38. 10.1111/j.1600-0404.2008.01057.x PubMed DOI
Liu W., Xu Z., Deng Y., Xu B., Wei Y., Yang T. (2013). Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex. Neurotox. Res. 24, 320–337. 10.1007/s12640-013-9386-3 PubMed DOI
Lovell M. A., Ehmann W. D., Mattson M. P., Markesbery W. R. (1997). Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol. Aging 1997, 18:457–18:461. 10.1016/S0197-4580(97)00108-5 PubMed DOI
Lovell M. A., Markesbery W. R. (2001). Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid. Arch. Neurol. 58, 392–396. 10.1001/archneur.58.3.392 PubMed DOI
Matsunaga S., Kishi T., Nakao Iwata N. (2015). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One 10, 1–16. 10.1371/journal.pone.0123289 PubMed DOI PMC
McKhann G., Knopman D. S., Chertkow H., Hyman B. T., Jack C.R., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 (3), 263–269. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Milatovic D., Gupta R. C., Aschner M. (2006). Anticholinesterase toxicity and oxidative stress. Sci. World J. 6, 295–310. 10.1100/tsw.2006.38 PubMed DOI PMC
Milatovic D., Gupta R. C., Dekundy A., Montine T. J., Dettbarn W. D. (2005). Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine. Toxicology. 208 (1), 13–24. 10.1016/j.tox.2004.11.004 PubMed DOI
Montine T. J., Markesbery W. R., Morrow J. D., Roberts L. J., 2nd (1998). Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann. Neurol. 44, 410–413. 10.1002/ana.410440322 PubMed DOI
Montine K. S., Quinn J. F., Zhan J., Fessel J. P., RobertsII L. J., Morrow J. D., et al. (2004). Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem. Phys. Lipids 128, 117–124. 10.1016/j.chemphyslip.2003.10.010 PubMed DOI
Noetzli M., Eap C. B. (2013). Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin, Pharmacokinet. 52, 225–241. 10.1007/s40262-013-0038-9 PubMed DOI
Noetzli M., Guidi M., Ebbing K., Eyer S., Wilhelm L., Michon A., et al. (2013). Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin. Pharmacokinet. 52, 211–223. 10.1007/s40262-013-0032-2 PubMed DOI
Parsons C. G., Danysz W., Quack G. (1999). Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38, 735–767. 10.1016/S0028-3908(99)00019-2 PubMed DOI
Parsons C. G., Stoffler A., Danysz W. (2007). Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology 53, 699–723. 10.1016/j.neuropharm.2007.07.013 PubMed DOI
Pietá Dias C., Martins de Lima M. N., Presti-Torres J., Dornelles A., Garcia V. A., Siciliani Scalco F., et al. (2007). Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146 (4), 1719–1725. 10.1016/j.neuroscience.2007.03.018 PubMed DOI
Praticò D., Clark C. M., Lee V. M. Y., Trojanowski J. Q., Rokach J., FitzGerald G. A. (2000). Increased 8,12-iso-iPF2α-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol. 48, 809–812. 10.1002/1531-8249(200011)48:5<809::AID-ANA19>3.0.CO;2-9 PubMed DOI
Pratico D., Clark C. M., Liun F., Rokach J., Lee V. Y., Trojanowski J. Q. (2002). Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch. Neurol. 59, 972–976. 10.1001/archneur.59.6.972 PubMed DOI
Rammes G., Danysz W., Parsons C. G. (2008). Pharmacodynamics of memantine: an update. Curr. Neuropharmacol. 6 (1), 55–78. 10.2174/157015908783769671 PubMed DOI PMC
Ressner P., Hort J., Rektorová I., Bartoš A., Rusina R., Línek V., et al. (2008) Doporučené postupy pro diagnostiku Alzheimerovy nemoci a dalších onemocnění spojených s demencí. Cesk Slov Neurol N. 71/104 (4), 494–501.
Ryberg H., Caidahl K. (2007). Chromatographic and mass spectrometric methods for quantitative determination of 3-nitrotyrosine in biological samples and their application to human samples. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 851, 160–171. 10.1016/j.jchromb.2007.02.001 PubMed DOI
Scott G. S., Bowman S. R., Smith T., Flower R. J., Bolton C. (2007). Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Biochem. Pharmacol. 73, 228–236. 10.1016/j.bcp.2006.09.021 PubMed DOI PMC
Summerfield S. G., Zhang Y., Liu H. (2016). Examining the uptake of central nervous system drugs and candidates across the blood–brain barrier. J. Pharmacol. Exp. Ther. 358 (2), 294–305. 10.1124/jpet.116.232447 PubMed DOI
Tampi R. R., van Dyck C. H. (2007). Memantine: efficacy and safety in mild-to-severe Alzheimer’s disease. Neuropsychiatry Dis. Treat, 3:245–258. 10.2147/nedt.2007.3.2.245 PubMed DOI PMC
Tohgi H., Abe T., Yamazaki K., Murata T., Ishizaki E., Isobe C. (1999). Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci. Lett. 269, 52–54. 10.1016/S0304-3940(99)00406-1 PubMed DOI
Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496. 10.1124/pr.109.002451 PubMed DOI PMC
ValiŠ M., Masopust J., Vysata O., Hort J., Dolezal R., Tomek J., et al. (2017). Concentration of donepezil in the cerebrospinal fluid of AD patients: evaluation of dosage sufficiency in standard treatment strategy. Neurotox. Res. 31, 162–168. 10.1007/s12640-016-9672-y PubMed DOI PMC
Vanova N., Muckova L., Schmidt M., Herman D., Dlabkova A., Pejchal J., et al. (2018). Simultaneous determination of malondialdehyde and 3-nitrotyrosine in cultured human hepatoma cells by liquid chromatography-mass spectrometry. Biomed. Chromatogr. 32 (12), e4349, 10.1002/bmc.4349 PubMed DOI
Wang Z. C., Zhao J., Li S. (2013). Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-beta. Neurosci. Bull. 29, 752–760. 10.1007/s12264-013-1383-2 PubMed DOI PMC
Zhang Y., Li P., Feng J., Wu M. (2016). Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci. 37, 1039–1047. 10.1007/s10072-016-2546-5 PubMed DOI PMC
Zhao Y., Zhao B. (2013). Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013, 316523 10.1155/2013/316523. PubMed DOI PMC