Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3 ̄, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
- MeSH
- Bacteria * metabolism genetics classification MeSH
- Biodiversity * MeSH
- Biotechnology * MeSH
- Potassium metabolism MeSH
- Nitrogen metabolism MeSH
- Phosphorus metabolism MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- Crops, Agricultural MeSH
- Agriculture MeSH
- Nutrients * metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
- MeSH
- Antioxidants metabolism MeSH
- Bioaccumulation MeSH
- Environmental Pollutants toxicity MeSH
- Humans MeSH
- Oxidative Stress * drug effects MeSH
- Metals, Heavy * toxicity MeSH
- Environmental Exposure adverse effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
- MeSH
- Bacteria * metabolism drug effects MeSH
- Biodegradation, Environmental * MeSH
- Eukaryota metabolism drug effects MeSH
- Fungi metabolism MeSH
- Cadmium * metabolism toxicity MeSH
- Soil Pollutants * metabolism MeSH
- Lead * metabolism toxicity MeSH
- Plants microbiology metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
A new group of potent histone deacetylase inhibitors (HDACis) capable of inhibiting cell growth and affecting cell-cycle progression in Tohoku Hospital Pediatrics-1 (THP-1) monocytic leukaemia cells was synthesized. The inhibitors belong to a series of hydroxamic acid derivatives. We designed and synthesized a series of 22 N-hydroxycinnamamide derivatives, out of which 20 are new compounds. These compounds contain various substituted anilides as the surface recognition moiety (SRM), a p-hydroxycinnamate linker, and hydroxamic acids as the zinc-binding group (ZBG). The whole series of synthesized hydroxamic acids inhibited THP-1 cell proliferation. Compounds 7d and 7p, which belong to the category of derivatives with the most potent antiproliferative properties, exert a similar effect on cell-cycle progression as vorinostat and induce apoptosis in THP-1 cells. Furthermore, compounds 7d and 7p were demonstrated to inhibit HDAC class I and II in THP-1 cells with comparable potency to vorinostat and increase acetylation of histones H2a, H2b, H3, and H4. Molecular modelling was used to predict the probable binding mode of the studied HDACis in class I and II histone deacetylases in terms of Zn2+ ion chelation by the hydroxamate group.
- MeSH
- Apoptosis * drug effects MeSH
- Cell Cycle drug effects MeSH
- Histone Deacetylases metabolism MeSH
- Histone Deacetylase Inhibitors * pharmacology chemical synthesis chemistry MeSH
- Hydroxamic Acids * pharmacology chemical synthesis chemistry MeSH
- Coumaric Acids * pharmacology chemistry chemical synthesis MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology chemical synthesis chemistry MeSH
- Drug Screening Assays, Antitumor MeSH
- Molecular Docking Simulation MeSH
- THP-1 Cells MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
- MeSH
- Flavonoids * pharmacology chemistry therapeutic use metabolism MeSH
- Humans MeSH
- Neoplasms drug therapy metabolism pathology MeSH
- Neurodegenerative Diseases drug therapy metabolism MeSH
- Oxidative Stress * drug effects MeSH
- Inflammation * drug therapy metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Acinetobacter baumannii (AB) is an opportunistic pathogen with growing clinical relevance due to its increasing level of antimicrobial resistance in the last few decades. In the event of an AB hospital outbreak, fast detection and localization of the pathogen is crucial, to prevent its further spread. However, contemporary diagnostic tools do not always meet the requirements for rapid and accurate diagnosis. For this reason, we report here the possibility of using gallium-68 labeled siderophores, bacterial iron chelators, for positron emission tomography imaging of AB infections. In our study, we radiolabeled several siderophores and tested their in vitro uptake in AB cultures. Based on the results and the in vitro properties of studied siderophores, we selected two of them for further in vivo testing in infectious models. Both selected siderophores, ferrioxamine E and ferrirubin, showed promising in vitro characteristics. In vivo, we observed rapid pharmacokinetics and no excessive accumulation in organs other than the excretory organs in normal mice. We demonstrated that the radiolabeled siderophores accumulate in AB-infected tissue in three animal models: a murine model of myositis, a murine model of dorsal wound infection and a rat model of pneumonia. These results suggest that both siderophores radiolabeled with Ga-68 could be used for PET imaging of AB infection.
- MeSH
- Acinetobacter baumannii * MeSH
- Acinetobacter Infections * diagnostic imaging microbiology MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Positron-Emission Tomography * methods MeSH
- Gallium Radioisotopes * chemistry MeSH
- Siderophores * chemistry pharmacokinetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The polymerase acidic (PA) subunit of the influenza virus, an endonuclease of the RNA-dependent RNA polymerase, represents a viable target for anti-influenza therapies, as evidenced by the efficacy of the FDA-approved drug Xofluza. A characteristic feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions within the enzyme's catalytic site. Previously, our studies identified luteolin and its C-8-glucoside orientin as potent endonuclease inhibitors. This report details our subsequent investigation into the structural modifications of the phenyl moiety attached to the C-8 position of luteolin. The inhibitory potencies (IC50 values) quantified with AlphaScreen technology indicated that substituting the C-8 glucose moiety of orientin resulted in compounds with comparable inhibitory potency. From a series of eighteen compounds, acid 12 with 3-carboxylphenyl moiety at the C-8 position was the most potent inhibitor with nanomolar potency.
- MeSH
- Antiviral Agents * pharmacology chemical synthesis chemistry MeSH
- Endonucleases * antagonists & inhibitors metabolism MeSH
- Enzyme Inhibitors * pharmacology chemical synthesis chemistry MeSH
- Luteolin * pharmacology chemical synthesis chemistry MeSH
- Molecular Structure MeSH
- Drug Design * MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
The fibroblast growth factor receptor family members, FGFR1-4, are frequently overexpressed in various solid tumors, including breast cancer and sarcomas. This overexpression highlights the potential of the family of FGFRs as promising targets for cancer therapy. However, conventional FGFR kinase inhibitors often encounter challenges such as limited efficacy or drug resistance. In this study, we pursue an alternative strategy by designing a conjugate of the FGFR ligand FGF1 with the radioisotope 161Tb, for targeted therapy in FGFR-overexpressing cancer cells. FGF1 was engineered (eFGF1) to incorporate a single cysteine at the C terminus for site-specific labeling with a DOTA chelator. eFGF1-DOTA was mixed with the radioisotope 161Tb under mild conditions, resulting in a labeling efficiency above 90%. The nonradioactive ligands were characterized by mass spectrometry, while radioligands were characterized by thin-layer chromatography. The targeting function of the radioligands was assessed through confocal microscopy, flow cytometry, and Western blot analysis, focusing on binding to cancer cells and the activation of downstream signaling pathways related to FGFR. When compared to MCF-7 and RD cell lines with low FGFR expression, eFGF1-DOTA-Tb[161Tb] radioligands demonstrated significantly higher accumulation in FGFR-overexpressing cell lines (MCF-7 FGFR1 and RMS559), leading to enhanced cytotoxicity. Besides radionuclides, eFGF1 can also deliver doxorubicin (DOX) into cancer cells. Considering these characteristics, eFGF1-DOTA-Tb[161Tb] and eFGF1-DOX emerge as promising candidates for FGFR-targeted cancer therapy, and further evaluation in vivo is warranted.
- Publication type
- Journal Article MeSH
Copper radioisotopes can be used for imaging as well as for therapy and, thus, can form ideal theranostic pairs. The Cu(II) complexes of cross-bridged cyclam (cb-cyclam) derivatives are considered to be highly stable in vivo. However, the complexes are mostly formed under harsh conditions not compatible with sensitive biomolecules. Here, a new class of cb-cyclam derivatives, cross-bridged bis(phosphinate)cyclams ("cb-BPC"), were investigated. Ligands with one or two methylene-bis(phosphinate) -CH2-PO2H-CH2-PO2H(R) (R = H, OH, substituted alkyl) pendant arms were synthesized. Bifunctionalization on the distant phosphorus atom was carried out by employing P-nitrobenzyl (R = CH2-Ph-4-NO2) precursors and/or, for cb-BPC with two bis(phosphinate) pendant arms, by reactions of silyl-phosphites obtained by silylation of their P(O)-H fragments. The reactive bifunctional groups include amine, carboxylate, azide, isothiocyanate, maleimide and/or tetrazine, and also their orthogonally reactive combination in a single molecule of chelator. The cb-BPCs with one bis(phosphinate) arm were not efficiently radiolabelled with 64Cu. The cb-BPCs with two pendant arms were radiolabelled even at room temperature and with only a small excess of chelator, leading to a high specific activity. Radiolabelling was fully comparable with that of analogous bis(phosphinate) derivatives of cyclam and identical radiolabelling of cyclam and cb-cyclam derivatives was observed for the first time. The cb-BPCs with two bis(phosphinate) pendant arms represent a new class of rigid chelators for copper radioisotopes that are easily synthetically modifiable, highly hydrophilic and radiolabelled under mild conditions.
- Publication type
- Journal Article MeSH
Hemolysis and eryptosis contribute to anemia encountered in patients undergoing chemotherapy. Eicosapentaenoic acid (EPA) is an omega-3 dietary fatty acid that has anticancer potential by inducing apoptosis in cancer cells, but its effect on the physiology and lifespan of red blood cells (RBCs) is understudied. Human RBCs were exposed to anticancer concentrations of EPA (10-100 ?M) for 24 h at 37 °C. Acetylcholinesterase (AChE) activity and hemolysis were measured by colorimetric assays whereas annexin-V-FITC and forward scatter (FSC) were employed to identify eryptotic cells. Oxidative stress was assessed by H2DCFDA and intracellular Ca2+ was measured by Fluo4/AM. EPA significantly increased hemolysis and K+ leakage, and LDH and AST activities in the supernatants in a concentration-dependent manner. EPA also significantly increased annexin-V-FITC-positive cells and Fluo4 fluorescence and decreased FSC and AChE activity. A significant reduction in the hemolytic activity of EPA was noted in the presence extracellular isosmotic urea, 125 mM KCl, and polyethylene glycol 8000 (PEG 8000), but not sucrose. In conclusion, EPA stimulates hemolysis and eryptosis through Ca2+ buildup and AChE inhibition. Urea, blocking KCl efflux, and PEG 8000 alleviate the hemolytic activity of EPA. The anticancer potential of EPA may be optimized using Ca2+ channel blockers and chelators to minimize its toxicity to off-target tissue. Keywords: EPA, Eryptosis, Hemolysis, Calcium, Anticancer.
- MeSH
- Acetylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors * pharmacology MeSH
- Eryptosis drug effects MeSH
- Erythrocyte Membrane * drug effects metabolism MeSH
- Erythrocytes drug effects metabolism MeSH
- Phosphatidylserines * metabolism MeSH
- Hemolysis * drug effects MeSH
- Eicosapentaenoic Acid * pharmacology MeSH
- Humans MeSH
- Calcium metabolism MeSH
- Calcium Signaling * drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH