The effect of host admixture on wild house mouse gut microbiota is weak when accounting for spatial autocorrelation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-19307S
Grantová Agentura České Republiky
PubMed
37933543
DOI
10.1111/mec.17192
Knihovny.cz E-zdroje
- Klíčová slova
- Mus musculus, admixture, gut microbiota, hybrid zone, spatial autocorrelation,
- MeSH
- biologická evoluce MeSH
- mikrobiota * MeSH
- myši MeSH
- reprodukční izolace MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The question of how interactions between the gut microbiome and vertebrate hosts contribute to host adaptation and speciation is one of the major problems in current evolutionary research. Using bacteriome and mycobiome metabarcoding, we examined how these two components of the gut microbiota vary with the degree of host admixture in secondary contact between two house mouse subspecies (Mus musculus musculus and M. m. domesticus). We used a large data set collected at two replicates of the hybrid zone and model-based statistical analyses to ensure the robustness of our results. Assuming that the microbiota of wild hosts suffers from spatial autocorrelation, we directly compared the results of statistical models that were spatially naive with those that accounted for spatial autocorrelation. We showed that neglecting spatial autocorrelation can strongly affect the results and lead to misleading conclusions. The spatial analyses showed little difference between subspecies, both in microbiome composition and in individual bacterial lineages. Similarly, the degree of admixture had minimal effects on the gut bacteriome and mycobiome and was caused by changes in a few microbial lineages that correspond to the common symbionts of free-living house mice. In contrast to previous studies, these data do not support the hypothesis that the microbiota plays an important role in host reproductive isolation in this particular model system.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Faculty of Agriculture and Technology South Bohemia University České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Albrechtová, J., Albrecht, T., Baird, S. J. E., Macholán, M., Rudolfsen, G., Munclinger, P., Tucker, P. K., & Piálek, J. (2012). Sperm-related phenotypes implicated in both maintenance and breakdown of a natural species barrier in the house mouse. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4803-4810. https://doi.org/10.1098/rspb.2012.1802
Amato, K. R., Mallott, E. K., McDonald, D., Dominy, N. J., Goldberg, T., Lambert, J. E., Swedell, L., Metcalf, J. L., Gomez, A., Britton, G. A. O., Stumpf, R. M., Leigh, S. R., & Knight, R. (2019). Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biology, 20(1), 201. https://doi.org/10.1186/s13059-019-1807-z
Auchtung, T. A., Fofanova, T. Y., Stewart, C. J., Nash, A. K., Wong, M. C., Gesell, J. R., Auchtung, J. M., Ajami, N. J., & Petrosino, J. F. (2018). Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere, 3(2), e00092-18. https://doi.org/10.1128/mSphere.00092-18
Baird, S. J. E., Ribas, A., Macholán, M., Albrecht, T., Piálek, J., & Goüy de Bellocq, J. (2012). Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution, 66(9), 2757-2772. https://doi.org/10.1111/j.1558-5646.2012.01633.x
Balard, A., Jarquín-Díaz, V. H., Jost, J., Martincová, I., Ďureje, Ľ., Piálek, J., Macholán, M., Goüy de Bellocq, J., Baird, S. J. E., & Heitlinger, E. (2020). Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 33(4), 435-448. https://doi.org/10.1111/jeb.13578
Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010). Regression analysis of spatial data. Ecology Letters, 13(2), 246-264. https://doi.org/10.1111/j.1461-0248.2009.01422.x
Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N., & Dunn, R. R. (2015). The evolution of stomach acidity and its relevance to the human microbiome. PLoS One, 10(7), e0134116. https://doi.org/10.1371/journal.pone.0134116
Bendová, B., Mikula, O., Vošlajerová Bímová, B., Čížková, D., Daniszová, K., Ďureje, Ľ., Hiadlovská, Z., Macholán, M., Martin, J.-F., Piálek, J., Schmiedová, L., & Kreisinger, J. (2022). Divergent gut microbiota in two closely related house mouse subspecies under common garden conditions. FEMS Microbiology Ecology, 98(8), fiac078. https://doi.org/10.1093/femsec/fiac078
Bendová, B., Piálek, J., Ďureje, Ľ., Schmiedová, L., Čížková, D., Martin, J.-F., & Kreisinger, J. (2020). How being synanthropic affects the gut bacteriome and mycobiome: Comparison of two mouse species with contrasting ecologies. BMC Microbiology, 20(1), 194. https://doi.org/10.1186/s12866-020-01859-8
Bliss, J. M., Basavegowda, K. P., Watson, W. J., Sheikh, A. U., & Ryan, R. M. (2008). Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. The Pediatric Infectious Disease Journal, 27(3), 231-235. https://doi.org/10.1097/INF.0b013e31815bb69d
Brucker, R. M., & Bordenstein, S. R. (2012). Speciation by symbiosis. Trends in Ecology & Evolution, 27(8), 443-451. https://doi.org/10.1016/j.tree.2012.03.011
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Chandler, J. A., & Turelli, M. (2014). Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science, 345(6200), 1011. https://doi.org/10.1126/science.1251997
Čížková, D., Ďureje, Ľ., Piálek, J., & Kreisinger, J. (2021). Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death. Heredity, 127(2), 141-150. https://doi.org/10.1038/s41437-021-00445-6
Coyte, K. Z., & Rakoff-Nahoum, S. (2019). Understanding competition and cooperation within the mammalian gut microbiome. Current Biology, 29(11), R538-R544. https://doi.org/10.1016/j.cub.2019.04.017
Delsuc, F., Metcalf, J. L., Wegener Parfrey, L., Song, S. J., González, A., & Knight, R. (2014). Convergence of gut microbiomes in myrmecophagous mammals. Molecular Ecology, 23(6), 1301-1317. https://doi.org/10.1111/mec.12501
Dobzhansky, T. (1937). Genetics and the origin of species. Columbia University Press.
Ďureje, Ľ., Macholán, M., Baird, S. J. E., & Piálek, J. (2012). The mouse hybrid zone in Central Europe: From morphology to molecules. Folia Zoologica, 61(3/4), 308-318.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
Galperin, M. Y., Mekhedov, S. L., Puigbo, P., Smirnov, S., Wolf, Y. I., & Rigden, D. J. (2012). Genomic determinants of sporulation in bacilli and clostridia: Towards the minimal set of sporulation-specific genes. Environmental Microbiology, 14(11), 2870-2890. https://doi.org/10.1111/j.1462-2920.2012.02841.x
Gomez, A., Petrzelkova, K. J., Burns, M. B., Yeoman, C. J., Amato, K. R., Vlckova, K., Modry, D., Todd, A., Jost Robinson, C. A., Remis, M. J., Torralba, M. G., Morton, E., Umaña, J. D., Carbonero, F., Gaskins, H. R., Nelson, K. E., Wilson, B. A., Stumpf, R. M., White, B. A., … Blekhman, R. (2016). Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Reports, 14(9), 2142-2153. https://doi.org/10.1016/j.celrep.2016.02.013
Groussin, M., Mazel, F., & Alm, E. J. (2020). Co-evolution and Co-speciation of host-gut bacteria systems. Cell Host & Microbe, 28(1), 12-22. https://doi.org/10.1016/j.chom.2020.06.013
Groussin, M., Mazel, F., Sanders, J. G., Smillie, C. S., Lavergne, S., Thuiller, W., & Alm, E. J. (2017). Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 8(1), 14319. https://doi.org/10.1038/ncomms14319
Hallen-Adams, H. E., Kachman, S. D., Kim, J., Legge, R. M., & Martínez, I. (2015). Fungi inhabiting the healthy human gastrointestinal tract: A diverse and dynamic community. Fungal Ecology, 15, 9-17. https://doi.org/10.1016/j.funeco.2015.01.006
Hildebrand, F., Gossmann, T. I., Frioux, C., Özkurt, E., Myers, P. N., Ferretti, P., Kuhn, M., Bahram, M., Nielsen, H. B., & Bork, P. (2021). Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host & Microbe, 29(7), 1167-1176.e9. https://doi.org/10.1016/j.chom.2021.05.008
Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G. D., Lewis, J. D., & Bushman, F. D. (2013). Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One, 8(6), e66019. https://doi.org/10.1371/journal.pone.0066019
Hrncir, T. (2022). Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms, 10(3), 578. https://doi.org/10.3390/microorganisms10030578
Janousek, V., Wang, L., Luzynski, K., Dufkova, P., Vyskocilova, M. M., Nachman, M. W., Munclinger, P., Macholan, M., Pialek, J., & Tucker, P. K. (2012). Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. omesticus. Molecular Ecology, 21(12), 3032-3047. https://doi.org/10.1111/j.1365-294X.2012.05583.x
Jiang, H., Lei, R., Ding, S.-W., & Zhu, S. (2014). Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics, 15(1), 182. https://doi.org/10.1186/1471-2105-15-182
Jones, E. P., Van Der Kooij, J., Solheim, R., & Searle, J. B. (2010). Norwegian house mice (Mus musculus musculus/domesticus): Distributions, routes of colonization and patterns of hybridization. Molecular Ecology, 19(23), 5252-5264. https://doi.org/10.1111/j.1365-294X.2010.04874.x
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808
Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S. T., Bruns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., … Larsson, K.-H. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21), 5271-5277. https://doi.org/10.1111/mec.12481
Korpela, K., Costea, P., Coelho, L. P., Kandels-Lewis, S., Willemsen, G., Boomsma, D. I., Segata, N., & Bork, P. (2018). Selective maternal seeding and environment shape the human gut microbiome. Genome Research, 28(4), 561-568. https://doi.org/10.1101/gr.233940.117
Kundu, P., Blacher, E., Elinav, E., & Pettersson, S. (2017). Our gut microbiome: The evolving inner self. Cell, 171(7), 1481-1493. https://doi.org/10.1016/j.cell.2017.11.024
Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647-1651. https://doi.org/10.1126/science.1155725
Li, X. V., Leonardi, I., & Iliev, I. D. (2019). Gut mycobiota in immunity and inflammatory disease. Immunity, 50(6), 1365-1379. https://doi.org/10.1016/j.immuni.2019.05.023
Li, Y., Fujiwara, K., Osada, N., Kawai, Y., Takada, T., Kryukov, A. P., Abe, K., Yonekawa, H., Shiroishi, T., Moriwaki, K., Saitou, N., & Suzuki, H. (2021). House mouse Mus musculus dispersal in East Eurasia inferred from 98 newly determined complete mitochondrial genome sequences. Heredity, 126(1), 132-147. https://doi.org/10.1038/s41437-020-00364-y
Linnenbrink, M., Wang, J., Hardouin, E. A., Kuenzel, S., Metzler, D., & Baines, J. F. (2013). The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Molecular Ecology, 22(7), 1904-1916. https://doi.org/10.1111/mec.12206
Ma, Z. S. (2020). Testing the Anna Karenina principle in human microbiome-associated diseases. iScience, 23(4), 101007. https://doi.org/10.1016/j.isci.2020.101007
Macholán, M., Munclinger, P., Šugerková, M., Dufková, P., Bímová, B., Božíková, E., Zima, J., & Piálek, J. (2007). Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution, 61(4), 746-771. https://doi.org/10.1111/j.1558-5646.2007.00065.x
Mallott, E. K., & Amato, K. R. (2021). Host specificity of the gut microbiome. Nature Reviews Microbiology, 19(10), 639-653. https://doi.org/10.1038/s41579-021-00562-3
Margulis, L. (1990). Words as battle cries-Symbiogenesis and the new field of endocytobiology. Bioscience, 40(9), 673-677. https://doi.org/10.2307/1311435
Mazel, F., Davis, K. M., Loudon, A., Kwong, W. K., Groussin, M., & Parfrey, L. W. (2018). Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems, 3(5), e00097-18. https://doi.org/10.1128/mSystems.00097-18
Mazel, F., Guisan, A., & Parfrey, L. W. (2023). Transmission mode and dispersal traits correlate with host specificity in mammalian gut microbes. Molecular Ecology, 1-11. https://doi.org/10.1111/mec.16862
McArtor, D. B., Lubke, G. H., & Bergeman, C. S. (2017). Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika, 82(4), 1052-1077. https://doi.org/10.1007/s11336-016-9527-8
McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., … Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, 110(9), 3229-3236. https://doi.org/10.1073/pnas.1218525110
McGee, J. S., & Huttenhower, C. (2021). Of mice and men and women: Sexual dimorphism of the gut microbiome. International Journal of Women's Dermatology, 7(5, Part A), 533-538. https://doi.org/10.1016/j.ijwd.2021.10.007
McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., & Knight, R. (2017). The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57(4), 690-704. https://doi.org/10.1093/icb/icx090
Miller, E. T., Svanbäck, R., & Bohannan, B. J. M. (2018). Microbiomes as metacommunities: Understanding host-associated microbes through metacommunity ecology. Trends in Ecology & Evolution, 33(12), 926-935. https://doi.org/10.1016/j.tree.2018.09.002
Mims, T. S., Abdallah, Q. A., Stewart, J. D., Watts, S. P., White, C. T., Rousselle, T. V., Gosain, A., Bajwa, A., Han, J. C., Willis, K. A., & Pierre, J. F. (2021). The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Communications Biology, 4(1), 281. https://doi.org/10.1038/s42003-021-01820-z
Moeller, A. H., Caro-Quintero, A., Mjungu, D., Georgiev, A. V., Lonsdorf, E. V., Muller, M. N., Pusey, A. E., Peeters, M., Hahn, B. H., & Ochman, H. (2016). Cospeciation of gut microbiota with hominids. Science, 353(6297), 380-382. https://doi.org/10.1126/science.aaf3951
Moeller, A. H., Gomes-Neto, J. C., Mantz, S., Kittana, H., Munoz, R. R. S., Schmaltz, R. J., Ramer-Tait, A. E., & Nachman, M. W. (2019). Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere, 4(4), e00387-19. https://doi.org/10.1128/mSphere.00387-19
Moeller, A. H., Peeters, M., Ndjango, J.-B., Li, Y., Hahn, B. H., & Ochman, H. (2013). Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 23(10), 1715-1720. https://doi.org/10.1101/gr.154773.113
Moeller, A. H., Suzuki, T. A., Lin, D., Lacey, E. A., Wasser, S. K., & Nachman, M. W. (2017). Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proceedings of the National Academy of Sciences, 114(52), 13768-13773. https://doi.org/10.1073/pnas.1700122114
Moran, N. A., & Sloan, D. B. (2015). The hologenome concept: Helpful or hollow? PLoS Biology, 13(12), e1002311. https://doi.org/10.1371/journal.pbio.1002311
Moulia, C., Aussel, J., Bonhomme, F., Boursot, P., Nielsen, J., & Renaud, F. (1991). Wormy mice in a hybrid zone-A genetic-control of susceptibility to parasite infection. Journal of Evolutionary Biology, 4(4), 679-687. https://doi.org/10.1046/j.1420-9101.1991.4040679.x
Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970-974. https://doi.org/10.1126/science.1198719
Muller, H. (1942). Isolating mechanisms, evolution, and temperature. Biological Symposia, 6, 71-125.
Munclinger, P., Boursot, P., & Dod, B. (2003). B1 insertions as easy markers for mouse population studies. Mammalian Genome, 14(6), 359-366. https://doi.org/10.1007/s00335-002-3065-7
Nash, A. K., Auchtung, T. A., Wong, M. C., Smith, D. P., Gesell, J. R., Ross, M. C., Stewart, C. J., Metcalf, G. A., Muzny, D. M., Gibbs, R. A., Ajami, N. J., & Petrosino, J. F. (2017). The gut mycobiome of the human microbiome project healthy cohort. Microbiome, 5(1), 153. https://doi.org/10.1186/s40168-017-0373-4
Nayfach, S., Rodriguez-Mueller, B., Garud, N., & Pollard, K. S. (2016). An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Research, 26(11), 1612-1625. https://doi.org/10.1101/gr.201863.115
Oksanen, J. (2010). Vegan: Community ecology package. http://CRAN.R-Project.Org/Package=vegan
Orr, H. A., & Turelli, M. (2001). The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities. Evolution; International Journal of Organic Evolution, 55(6), 1085-1094.
Peleg, A. Y., Hogan, D. A., & Mylonakis, E. (2010). Medically important bacterial-fungal interactions. Nature Reviews Microbiology, 8(5), 340-349. https://doi.org/10.1038/nrmicro2313
Phifer-Rixey, M., Harr, B., & Hey, J. (2020). Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evolutionary Biology, 20(1), 120. https://doi.org/10.1186/s12862-020-01666-9
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. https://doi.org/10.1093/nar/gks1219
Rosshart, S. P., Vassallo, B. G., Angeletti, D., Hutchinson, D. S., Morgan, A. P., Takeda, K., Hickman, H. D., McCulloch, J. A., Badger, J. H., Ajami, N. J., Trinchieri, G., Pardo-Manuel de Villena, F., Yewdell, J. W., & Rehermann, B. (2017). Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell, 171(5), 1015-1028.e13. https://doi.org/10.1016/j.cell.2017.09.016
Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., … Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210-215. https://doi.org/10.1038/nature25973
Rousset, F., & Ferdy, J.-B. (2014). Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography, 37(8), 781-790. https://doi.org/10.1111/ecog.00566
Saefken, B., Kneib, T., van Waveren, C.-S., & Greven, S. (2014). A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models. Electronic Journal of Statistics, 8(1), 201-225. https://doi.org/10.1214/14-EJS881
Sage, R. D., Heyneman, D., Lim, K.-C., & Wilson, A. C. (1986). Wormy mice in a hybrid zone. Nature, 324(6092), 60-63. https://doi.org/10.1038/324060a0
Sak, B., Kvac, M., Kvetonova, D., Albrecht, T., & Pialek, J. (2011). The first report on natural Enterocytozoon bieneusi and Encephalitozoon spp. infections in wild east-European house mice (Mus musculus musculus) and west-European house mice (M. M. Domesticus) in a hybrid zone across The Czech Republic-Germany border. Veterinary Parasitology, 178(3-4), 246-250. https://doi.org/10.1016/j.vetpar.2010.12.044
Shapira, M. (2016). Gut microbiotas and host evolution: Scaling up Symbiosis. Trends in Ecology & Evolution, 31(7), 539-549. https://doi.org/10.1016/j.tree.2016.03.006
Sharma, A. K., Davison, S., Pafco, B., Clayton, J. B., Rothman, J. M., McLennan, M. R., Cibot, M., Fuh, T., Vodicka, R., Robinson, C. J., Petrzelkova, K., & Gomez, A. (2022). The primate gut mycobiome-bacteriome interface is impacted by environmental and subsistence factors. Npj Biofilms and Microbiomes, 8(1), 1-11. https://doi.org/10.1038/s41522-022-00274-3
Sharp, C., & Foster, K. R. (2022). Host control and the evolution of cooperation in host microbiomes. Nature Communications, 13(1), 3567. https://doi.org/10.1038/s41467-022-30971-8
Sharpton, T. J. (2018). Role of the gut microbiome in vertebrate evolution. mSystems, 3(2), e00174-17. https://doi.org/10.1128/mSystems.00174-17
Suzuki, T. A., Fitzstevens, J. L., Schmidt, V. T., Enav, H., Huus, K. E., Mbong Ngwese, M., Grießhammer, A., Pfleiderer, A., Adegbite, B. R., Zinsou, J. F., Esen, M., Velavan, T. P., Adegnika, A. A., Song, L. H., Spector, T. D., Muehlbauer, A. L., Marchi, N., Kang, H., Maier, L., … Ley, R. E. (2022). Codiversification of gut microbiota with humans. Science, 377(6612), 1328-1332. https://doi.org/10.1126/science.abm7759
The Integrative HMP (iHMP) Research Network Consortium. (2019). The integrative human microbiome project. Nature, 569(7758), 641-648. https://doi.org/10.1038/s41586-019-1238-8
Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Zech Xu, Z., Jiang, L., … Knight, R. (2017). A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 551(7681), 457-463. https://doi.org/10.1038/nature24621
Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., Jonge, M. M. J. d., Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution modelling with the r-package Hmsc. Methods in Ecology and Evolution, 11(3), 442-447. https://doi.org/10.1111/2041-210X.13345
Turner, L. M., & Harr, B. (2014). Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife, 3, e02504. https://doi.org/10.7554/eLife.02504
van Tilburg Bernardes, E., Pettersen, V. K., Gutierrez, M. W., Laforest-Lapointe, I., Jendzjowsky, N. G., Cavin, J.-B., Vicentini, F. A., Keenan, C. M., Ramay, H. R., Samara, J., MacNaughton, W. K., Wilson, R. J. A., Kelly, M. M., McCoy, K. D., Sharkey, K. A., & Arrieta, M.-C. (2020). Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nature Communications, 11, 2577. https://doi.org/10.1038/s41467-020-16431-1
Vangay, P., Johnson, A. J., Ward, T. L., Al-Ghalith, G. A., Shields-Cutler, R. R., Hillmann, B. M., Lucas, S. K., Beura, L. K., Thompson, E. A., Till, L. M., Batres, R., Paw, B., Pergament, S. L., Saenyakul, P., Xiong, M., Kim, A. D., Kim, G., Masopust, D., Martens, E. C., … Knights, D. (2018). US immigration westernizes the human gut microbiome. Cell, 175(4), 962-972.e10. https://doi.org/10.1016/j.cell.2018.10.029
Vemuri, R., Shankar, E. M., Chieppa, M., Eri, R., & Kavanagh, K. (2020). Beyond just bacteria: Functional biomes in the gut ecosystem including Virome, Mycobiome, Archaeome and Helminths. Microorganisms, 8(4), 483. https://doi.org/10.3390/microorganisms8040483
Viney, M. (2019). The gut microbiota of wild rodents: Challenges and opportunities. Laboratory Animals, 53(3), 252-258. https://doi.org/10.1177/0023677218787538
Walker, A., Pfitzner, B., Harir, M., Schaubeck, M., Calasan, J., Heinzmann, S. S., Turaev, D., Rattei, T., Endesfelder, D., Castell, W. Z., Haller, D., Schmid, M., Hartmann, A., & Schmitt-Kopplin, P. (2017). Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Scientific Reports, 7(1), 11047. https://doi.org/10.1038/s41598-017-10369-z
Wang, J., Kalyan, S., Steck, N., Turner, L. M., Harr, B., Künzel, S., Vallier, M., Häsler, R., Franke, A., Oberg, H.-H., Ibrahim, S. M., Grassl, G. A., Kabelitz, D., & Baines, J. F. (2015). Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nature Communications, 6, 6440. https://doi.org/10.1038/ncomms7440
Wang, L., Luzynski, K., Pool, J. E., Janoušek, V., Dufková, P., Vyskočilová, M. M., Teeter, K. C., Nachman, M. W., Munclinger, P., Macholán, M., Piálek, J., & Tucker, P. K. (2011). Measures of linkage disequilibrium among neighbouring SNPs indicate asymmetries across the house mouse hybrid zone. Molecular Ecology, 20(14), 2985-3000. https://doi.org/10.1111/j.1365-294X.2011.05148.x
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. https://doi.org/10.1128/AEM.00062-07
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols (pp. 315-322). Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wu, M.-R., Chou, T.-S., Huang, C.-Y., & Hsiao, J.-K. (2020). A potential probiotic- Lachnospiraceae NK4A136 group: Evidence from the restoration of the dietary pattern from a high-fat diet. https://doi.org/10.21203/rs.3.rs-48913/v1
Xiao, L., Sonne, S. B., Feng, Q., Chen, N., Xia, Z., Li, X., Fang, Z., Zhang, D., Fjaere, E., Midtbø, L. K., Derrien, M., Hugenholtz, F., Tang, L., Li, J., Zhang, J., Liu, C., Hao, Q., Vogel, U. B., Mortensen, A., … Kristiansen, K. (2017). High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 5(1), 43. https://doi.org/10.1186/s40168-017-0258-6
Yamamoto, Y., Gaudu, P., & Gruss, A. (2011). Oxidative stress and oxygen metabolism in lactic acid bacteria. In K. Sonomoto, & A. Yokota (Eds.), Lactic acid bacteria and bifidobacteria: Current progress in advanced research (pp. 91-102). Caister Academic Press. https://www.caister.com/hsp/abstracts/lactic-acid-bacteria/05.html
Zaneveld, J. R., McMinds, R., & Vega Thurber, R. (2017). Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nature Microbiology, 2(9), 17121. https://doi.org/10.1038/nmicrobiol.2017.121
Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., Degivry, M.-C., Quéré, G., Garault, P., van Hylckama Vlieg, J. E. T., Garrett, W. S., Doré, J., & Veiga, P. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10(9), 2235-2245. https://doi.org/10.1038/ismej.2016.13
Zhang, F., Aschenbrenner, D., Yoo, J. Y., & Zuo, T. (2022). The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. The Lancet Microbe, 3(12), e969-e983. https://doi.org/10.1016/S2666-5247(22)00203-8
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492-506. https://doi.org/10.1038/s41422-020-0332-7
Zhu, L., Wang, J., & Bahrndorff, S. (2021). Editorial: The wildlife gut microbiome and its implication for conservation biology. Frontiers in Microbiology, 12, 697499. https://doi.org/10.3389/fmicb.2021.697499
Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723-735. https://doi.org/10.1111/j.1574-6976.2008.00123.x