Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mouse subspecies and their hybrids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
PubMed
39689880
PubMed Central
PMC11651899
DOI
10.1098/rspb.2024.1970
Knihovny.cz E-zdroje
- Klíčová slova
- host–microbiome interactions, hybridization, microbiome, spatial environment, species barriers,
- MeSH
- biologická evoluce MeSH
- hybridizace genetická * MeSH
- interakce mikroorganismu a hostitele MeSH
- mikrobiota MeSH
- myši MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Closely related host species share similar symbionts, but the effects of host genetic admixture and environmental conditions on these communities remain largely unknown. We investigated the influence of host genetic admixture and environmental factors on the intestinal prokaryotic and eukaryotic communities (fungi, parasites) of two house mouse subspecies (Mus musculus domesticus and M. m. musculus) and their hybrids in two settings: (i) wild-caught mice from the European hybrid zone and (ii) wild-derived inbred mice in a controlled laboratory environment before and during a community perturbation (infection). In wild-caught mice, environmental factors strongly predicted the overall microbiome composition. Subspecies' genetic distance significantly influenced the overall microbiome composition, and each component (bacteria, parasites and fungi). While hybridization had a weak effect, it significantly impacted fungal composition. We observed similar patterns in wild-derived mice, where genetic distances and hybridization influenced microbiome composition, with fungi being more stable to infection-induced perturbations than other microbiome components. Subspecies' genetic distance has a stronger and consistent effect across microbiome components than differences in expected heterozygosity among hybrids, suggesting that host divergence and host filtering play a key role in microbiome divergence, influenced by environmental factors. Our findings offer new insights into the eco-evolutionary processes shaping host-microbiome interactions.
Zobrazit více v PubMed
Contijoch EJ, et al. . 2019. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife (eds Garrett WS, Sokol H), 8, e40553. (10.7554/eLife.40553) PubMed DOI PMC
Lynch JB, Hsiao EY. 2019. Microbiomes as sources of emergent host phenotypes. Science 365, 1405–1409. (10.1126/science.aay0240) PubMed DOI
Stephen AM, Cummings JH. 1980. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56. (10.1099/00222615-13-1-45) PubMed DOI
Limon JJ, Skalski JH, Underhill DM. 2017. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165. (10.1016/j.chom.2017.07.002) PubMed DOI PMC
Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS. 2017. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22, 809–816.(10.1016/j.chom.2017.10.013) PubMed DOI PMC
van Tilburg Bernardes E, et al. . 2020. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11, 2577. (10.1038/s41467-020-16431-1) PubMed DOI PMC
Harrison XA, et al. . 2021. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc. R. Soc. B Biol. Sci. 288, 20210552. (10.1098/rspb.2021.0552) PubMed DOI PMC
Gupta Y, et al. . 2023. Impact of diet and host genetics on the murine intestinal mycobiome. Nat. Commun. 14, 834. (10.1038/s41467-023-36479-z) PubMed DOI PMC
Harris EV, de Roode JC, Gerardo NM. 2019. Diet–microbiome–disease: investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog. 15, e1007891. (10.1371/journal.ppat.1007891) PubMed DOI PMC
Brucker RM, Bordenstein SR. 2013. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669. (10.1126/science.1240659) PubMed DOI
Mallott EK, Amato KR. 2021. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19, 639–653. (10.1038/s41579-021-00562-3) PubMed DOI
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. 2019. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200. (10.1038/s41467-019-10191-3) PubMed DOI PMC
Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. 2018. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, 00097–18. (10.1128/mSystems.00097-18) PubMed DOI PMC
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225. (10.1371/journal.pbio.2000225) PubMed DOI PMC
Kohl KD. 2020. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Phil. Trans. R. Soc. B Biol.Sci. 375, 20190251. (10.1098/rstb.2019.0251) PubMed DOI PMC
Lim SJ, Bordenstein SR. 2020. An introduction to phylosymbiosis. Proc. R. Soc. B Biol. Sci. 287, 20192900. (10.1098/rspb.2019.2900) PubMed DOI PMC
Wang J, et al. . 2015. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440. (10.1038/ncomms7440) PubMed DOI PMC
Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16, 113–148. (10.1146/annurev.es.16.110185.000553) DOI
Bonhomme F, Searle JB. 2012. House mouse phylogeography. In Evolution of the house mouse (eds Macholán M, Baird SJE, Munclinger P, Piálek J), pp. 278–296. Cambridge, UK: Cambridge University Press. (10.1017/CBO9781139044547.013) DOI
Baird SJE, Macholán M. 2012. What can the Mus musculus musculus/M. m. domesticus hybrid zone tell us about speciation? In Evolution of the house mouse (eds Macholán M, Baird SJE, Munclinger P, Piálek J), pp. 334–372. Cambridge, UK: Cambridge University Press. (10.1017/CBO9781139044547.016) DOI
Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F. 1993. The evolution of house mice. Annu. Rev. Ecol. Syst. 24, 119–152. (10.1146/annurev.es.24.110193.001003) DOI
Macholán M. 2013. Hybrid zone, mouse. In Brenner’s encyclopedia of genetics. San Diego, CA: Academic Press. (10.1016/B978-0-12-374984-0.00755-5) DOI
Rieseberg LH, Archer MA, Wayne RK. 1999. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372. (10.1038/sj.hdy.6886170) PubMed DOI
Baird SJE, Ribas A, Macholán M, Albrecht T, Piálek J, Goüy de Bellocq J. 2012. Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution. 66, 2757–2772. (10.1111/j.1558-5646.2012.01633.x) PubMed DOI
Balard A, et al. . 2020. Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. J. Evol. Biol. 33, 435–448. (10.1111/jeb.13578) PubMed DOI
Bendová B, et al. . 2022. Divergent gut microbiota in two closely related house mouse subspecies under common garden conditions. FEMS Microbiol. Ecol. 98, fiac078. (10.1093/femsec/fiac078) PubMed DOI
Čížková D, Schmiedová L, Kváč M, Sak B, Macholán M, Piálek J, Kreisinger J. 2024. The effect of host admixture on wild house mouse gut microbiota is weak when accounting for spatial autocorrelation. Mol. Ecol. 33, e17192. (10.1111/mec.17192) PubMed DOI
Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. 2013. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 23, 1904–1916. (10.1111/mec.12206) PubMed DOI
Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, McAdam AG, Wu M. 2017. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5, 163. (10.1186/s40168-017-0382-3) PubMed DOI PMC
Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. 2017. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl Acad. Sci. 114, 13768–13773. (10.1073/pnas.1700122114) PubMed DOI PMC
Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, Coulson T, Knowles SCL. 2021. Social networks strongly predict the gut microbiota of wild mice. ISME J. 15, 2601–2613. (10.1038/s41396-021-00949-3) PubMed DOI PMC
Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. 2021. Modelling spatial patterns in host-associated microbial communities. Environ. Microbiol. 23, 2374–2388. (10.1111/1462-2920.15462) PubMed DOI
Jarquín-Díaz VH, Balard A, Jost J, Kraft J, Dikmen MN, Kvičerová J, Heitlinger E. 2019. Detection and quantification of house mouse Eimeria at the species level - challenges and solutions for the assessment of Coccidia in wildlife. Int. J. Parasitol. Parasites Wildl. 10, 29–40. (10.1016/j.ijppaw.2019.07.004) PubMed DOI PMC
Shibley PR, Chobotar B, Entzeroth R. 1989. A scanning electron microscope study of the colon of the mouse (Mus musculus) infected with Eimeria ferrisi (Protozoa, Apicomplexa, Coccidia). Eur. J. Protistol. 24, 119–124. (10.1016/S0932-4739(89)80039-2) PubMed DOI
Ferreira SCM, Jarquín-Díaz VH, Heitlinger E. 2023. Amplicon sequencing allows differential quantification of closely related parasite species: an example from rodent Coccidia (Eimeria). Parasit. Vectors 16, 204. (10.1186/s13071-023-05800-6) PubMed DOI PMC
Jarquín-Díaz VH, Balard A, Ferreira SCM, Mittné V, Murata JM, Heitlinger E. 2022. DNA-based quantification and counting of transmission stages provides different but complementary parasite load estimates: an example from rodent Coccidia (Eimeria). Parasit. Vectors 15, 1–13. (10.1186/s13071-021-05119-0) PubMed DOI PMC
Buuren BS van, Groothuis-Oudshoorn K mice. 2011. Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67. (10.18637/jss.v045.i03) DOI
Piálek J, et al. . 2023. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. bioRxiv 2023. (10.1101/2023.11.05.565684) DOI
Martincová I, Ďureje Ľ, Kreisinger J, Macholán M, Piálek J. 2019. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol. Evol. 9, 6124–6137. (10.1002/ece3.5196) PubMed DOI PMC
Gregorová S, Forejt J. 2000. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies--a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol. (Praha) 46, 31–41. PubMed
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583. (10.1038/nmeth.3869) PubMed DOI PMC
Heitlinger E. 2019. MultiAmplicon. See https://derele.github.io/MultiAmplicon/index.html.
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14. (10.1186/s40168-018-0605-2) PubMed DOI PMC
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. 2013. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat. Methods 10, 57–59. (10.1038/nmeth.2276) PubMed DOI PMC
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One (ed. Watson M), 8, e61217. (10.1371/journal.pone.0061217) PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. (10.1128/AEM.00062-07) PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6. (10.1093/nar/gks1219) PubMed DOI PMC
Nilsson RH, et al. . 2019. The unite database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. (10.1093/nar/gky1022) PubMed DOI PMC
Robeson MS 2nd, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. 2021. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 17, e1009581. (10.1371/journal.pcbi.1009581) PubMed DOI PMC
Csardi G, Nepusz T. 2006. The igraph software package for complex network research. Inter. J. Complex Syst. 1695, 1–0.
Oksanen J, et al. . 2022. vegan: Community Ecology Package. See https://github.com/vegandevs/vegan.
Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. 2000. Logratio analysis and compositional distance. Math. Geol. 32, 271–275. (10.1023/A:1007529726302) DOI
Gelman A. 2014. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623.
Bürkner PC. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28. (10.18637/jss.v080.i01) DOI
Raulo A, et al. . 2024. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat. Ecol. Evol. 8, 972–985. (10.1038/s41559-024-02381-0) PubMed DOI PMC
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25. (10.1371/journal.pcbi.1004226) PubMed DOI PMC
Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, Bonneau R, Ghedin E. 2018. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6, 1–14. (10.1186/s40168-017-0393-0) PubMed DOI PMC
Balard A, Heitlinger E. 2022. Shifting focus from resistance to disease tolerance: a review on hybrid house mice. Ecol. Evol. 12, 1–15. (10.1002/ece3.8889) PubMed DOI PMC
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740. (10.1111/j.1462-2920.2005.00956.x) PubMed DOI
Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ. 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664. (10.1038/ismej.2015.142) PubMed DOI PMC
Weinstein SB, Martínez-Mota R, Stapleton TE, Klure DM, Greenhalgh R, Orr TJ, Dale C, Kohl KD, Dearing MD. 2021. Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.) . Proc. Natl Acad. Sci. 118, e2108787118. (10.1073/pnas.2108787118) PubMed DOI PMC
Frynta D, Kaftanová-Eliášová B, Žampachová B, Voráčková P, Sádlová J, Landová E. 2018. Behavioural strategies of three wild-derived populations of the house mouse (Mus m. musculus and M. m. domesticus) in five standard tests of exploration and boldness: searching for differences attributable to subspecies and commensalism. Behav. Processes 157, 133–141. (10.1016/j.beproc.2018.09.008) PubMed DOI
Green CL, et al. . 2022. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 34, 209–226.(10.1016/j.cmet.2021.12.018) PubMed DOI PMC
Hiadlovská Z, Vošlajerová Bímová B, Mikula O, Piálek J, Macholán M. 2013. Transgressive segregation in a behavioural trait? Explorative strategies in two house mouse subspecies and their hybrids. Biol. J. Linn. Soc. Lond 108, 225–235. (10.1111/j.1095-8312.2012.01997.x) DOI
Morrow KH. 2024. Neutral and niche theory in community ecology: a framework for comparing model realism. Biol. Philos. 39, 4. (10.1007/s10539-024-09941-5) DOI
Abbott R, et al. . 2013. Hybridization and speciation. J. Evol. Biol. 26, 229–246. (10.1111/j.1420-9101.2012.02599.x) PubMed DOI
Dubois L, et al. . 2024. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 32, 1011–1024.(10.1016/j.chom.2024.05.004) PubMed DOI
Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111. (10.1086/283241) DOI
Brislawn CJ, et al. . 2019. Forfeiting the priority effect: turnover defines biofilm community succession. ISME J. 13, 1865–1877. (10.1038/s41396-019-0396-x) PubMed DOI PMC
Watson AR, et al. . 2023. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol. 24, 78. (10.1186/s13059-023-02924-x) PubMed DOI PMC
Deveau A, et al. . 2018. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. (10.1093/femsre/fuy008) PubMed DOI
Jarquín-Díaz VH, et al. . 2024. Aberrant microbiomes are associated with increased antibiotic resistance gene load in hybrid mice. ISME Commun. 4. (10.1093/ismeco/ycae053) PubMed DOI PMC
Ferreira SCM. 2024. Ferreira-scm/hybridization_spatial_hmhz: repository supporting manuscript (version v1). Zenodo (10.5281/zenodo.14046297) DOI
Ferreira SCM, Jarquín-Díaz VH, Planillo A, Ďureje Ľ, Martincová I, Kramer-Schadt Set al. . 2024. Supplementary material from: Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mice subspecies and their hybrids. Figshare (10.6084/m9.figshare.c.7571803) PubMed DOI