Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mouse subspecies and their hybrids

. 2024 Dec ; 291 (2037) : 20241970. [epub] 20241218

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39689880

Grantová podpora
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung

Closely related host species share similar symbionts, but the effects of host genetic admixture and environmental conditions on these communities remain largely unknown. We investigated the influence of host genetic admixture and environmental factors on the intestinal prokaryotic and eukaryotic communities (fungi, parasites) of two house mouse subspecies (Mus musculus domesticus and M. m. musculus) and their hybrids in two settings: (i) wild-caught mice from the European hybrid zone and (ii) wild-derived inbred mice in a controlled laboratory environment before and during a community perturbation (infection). In wild-caught mice, environmental factors strongly predicted the overall microbiome composition. Subspecies' genetic distance significantly influenced the overall microbiome composition, and each component (bacteria, parasites and fungi). While hybridization had a weak effect, it significantly impacted fungal composition. We observed similar patterns in wild-derived mice, where genetic distances and hybridization influenced microbiome composition, with fungi being more stable to infection-induced perturbations than other microbiome components. Subspecies' genetic distance has a stronger and consistent effect across microbiome components than differences in expected heterozygosity among hybrids, suggesting that host divergence and host filtering play a key role in microbiome divergence, influenced by environmental factors. Our findings offer new insights into the eco-evolutionary processes shaping host-microbiome interactions.

Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research Alfred Kowalke Straße 17 Berlin 10315 Germany

Department of Interdisciplinary Life Sciences Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Savoyenstraße 1 Vienna A 1160 Austria

Department of Molecular Parasitology Institute for Biology Humboldt University Berlin Philippstr 13 Haus 14 Berlin 10115 Germany

Division of Computational Systems Biology Center for Microbiology and Ecological Systems Science University of Vienna Djerassipl 1 Vienna 1030 Austria

Experimental and Clinical Research Center a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin Berlin Germany

Experimental and Clinical Research Center Charité Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin Lindenberger Weg 80 Berlin 13125 Germany

Institute of Ecology Chair of Planning related Animal Ecology Technische Universität Berlin Rothenburgstr 12 Berlin 12165 Germany

Max Delbrück Center for Molecular Medicine in the Helmholtz Association Robert Rössle Str 10 Berlin 13125 Germany

Research Facility Studenec Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic

Research Group Ecology and Evolution of Molecular Parasite Host Interactions Leibniz Institute for Zoo and Wildlife Research Alfred Kowalke Straße 17 Berlin 10315 Germany

Zobrazit více v PubMed

Contijoch EJ, et al. . 2019. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife (eds Garrett WS, Sokol H), 8, e40553. (10.7554/eLife.40553) PubMed DOI PMC

Lynch JB, Hsiao EY. 2019. Microbiomes as sources of emergent host phenotypes. Science 365, 1405–1409. (10.1126/science.aay0240) PubMed DOI

Stephen AM, Cummings JH. 1980. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56. (10.1099/00222615-13-1-45) PubMed DOI

Limon JJ, Skalski JH, Underhill DM. 2017. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165. (10.1016/j.chom.2017.07.002) PubMed DOI PMC

Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS. 2017. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22, 809–816.(10.1016/j.chom.2017.10.013) PubMed DOI PMC

van Tilburg Bernardes E, et al. . 2020. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11, 2577. (10.1038/s41467-020-16431-1) PubMed DOI PMC

Harrison XA, et al. . 2021. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc. R. Soc. B Biol. Sci. 288, 20210552. (10.1098/rspb.2021.0552) PubMed DOI PMC

Gupta Y, et al. . 2023. Impact of diet and host genetics on the murine intestinal mycobiome. Nat. Commun. 14, 834. (10.1038/s41467-023-36479-z) PubMed DOI PMC

Harris EV, de Roode JC, Gerardo NM. 2019. Diet–microbiome–disease: investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog. 15, e1007891. (10.1371/journal.ppat.1007891) PubMed DOI PMC

Brucker RM, Bordenstein SR. 2013. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669. (10.1126/science.1240659) PubMed DOI

Mallott EK, Amato KR. 2021. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19, 639–653. (10.1038/s41579-021-00562-3) PubMed DOI

Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. 2019. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200. (10.1038/s41467-019-10191-3) PubMed DOI PMC

Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. 2018. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, 00097–18. (10.1128/mSystems.00097-18) PubMed DOI PMC

Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225. (10.1371/journal.pbio.2000225) PubMed DOI PMC

Kohl KD. 2020. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Phil. Trans. R. Soc. B Biol.Sci. 375, 20190251. (10.1098/rstb.2019.0251) PubMed DOI PMC

Lim SJ, Bordenstein SR. 2020. An introduction to phylosymbiosis. Proc. R. Soc. B Biol. Sci. 287, 20192900. (10.1098/rspb.2019.2900) PubMed DOI PMC

Wang J, et al. . 2015. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440. (10.1038/ncomms7440) PubMed DOI PMC

Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16, 113–148. (10.1146/annurev.es.16.110185.000553) DOI

Bonhomme F, Searle JB. 2012. House mouse phylogeography. In Evolution of the house mouse (eds Macholán M, Baird SJE, Munclinger P, Piálek J), pp. 278–296. Cambridge, UK: Cambridge University Press. (10.1017/CBO9781139044547.013) DOI

Baird SJE, Macholán M. 2012. What can the Mus musculus musculus/M. m. domesticus hybrid zone tell us about speciation? In Evolution of the house mouse (eds Macholán M, Baird SJE, Munclinger P, Piálek J), pp. 334–372. Cambridge, UK: Cambridge University Press. (10.1017/CBO9781139044547.016) DOI

Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F. 1993. The evolution of house mice. Annu. Rev. Ecol. Syst. 24, 119–152. (10.1146/annurev.es.24.110193.001003) DOI

Macholán M. 2013. Hybrid zone, mouse. In Brenner’s encyclopedia of genetics. San Diego, CA: Academic Press. (10.1016/B978-0-12-374984-0.00755-5) DOI

Rieseberg LH, Archer MA, Wayne RK. 1999. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372. (10.1038/sj.hdy.6886170) PubMed DOI

Baird SJE, Ribas A, Macholán M, Albrecht T, Piálek J, Goüy de Bellocq J. 2012. Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution. 66, 2757–2772. (10.1111/j.1558-5646.2012.01633.x) PubMed DOI

Balard A, et al. . 2020. Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. J. Evol. Biol. 33, 435–448. (10.1111/jeb.13578) PubMed DOI

Bendová B, et al. . 2022. Divergent gut microbiota in two closely related house mouse subspecies under common garden conditions. FEMS Microbiol. Ecol. 98, fiac078. (10.1093/femsec/fiac078) PubMed DOI

Čížková D, Schmiedová L, Kváč M, Sak B, Macholán M, Piálek J, Kreisinger J. 2024. The effect of host admixture on wild house mouse gut microbiota is weak when accounting for spatial autocorrelation. Mol. Ecol. 33, e17192. (10.1111/mec.17192) PubMed DOI

Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. 2013. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 23, 1904–1916. (10.1111/mec.12206) PubMed DOI

Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, McAdam AG, Wu M. 2017. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5, 163. (10.1186/s40168-017-0382-3) PubMed DOI PMC

Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. 2017. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl Acad. Sci. 114, 13768–13773. (10.1073/pnas.1700122114) PubMed DOI PMC

Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, Coulson T, Knowles SCL. 2021. Social networks strongly predict the gut microbiota of wild mice. ISME J. 15, 2601–2613. (10.1038/s41396-021-00949-3) PubMed DOI PMC

Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. 2021. Modelling spatial patterns in host-associated microbial communities. Environ. Microbiol. 23, 2374–2388. (10.1111/1462-2920.15462) PubMed DOI

Jarquín-Díaz VH, Balard A, Jost J, Kraft J, Dikmen MN, Kvičerová J, Heitlinger E. 2019. Detection and quantification of house mouse Eimeria at the species level - challenges and solutions for the assessment of Coccidia in wildlife. Int. J. Parasitol. Parasites Wildl. 10, 29–40. (10.1016/j.ijppaw.2019.07.004) PubMed DOI PMC

Shibley PR, Chobotar B, Entzeroth R. 1989. A scanning electron microscope study of the colon of the mouse (Mus musculus) infected with Eimeria ferrisi (Protozoa, Apicomplexa, Coccidia). Eur. J. Protistol. 24, 119–124. (10.1016/S0932-4739(89)80039-2) PubMed DOI

Ferreira SCM, Jarquín-Díaz VH, Heitlinger E. 2023. Amplicon sequencing allows differential quantification of closely related parasite species: an example from rodent Coccidia (Eimeria). Parasit. Vectors 16, 204. (10.1186/s13071-023-05800-6) PubMed DOI PMC

Jarquín-Díaz VH, Balard A, Ferreira SCM, Mittné V, Murata JM, Heitlinger E. 2022. DNA-based quantification and counting of transmission stages provides different but complementary parasite load estimates: an example from rodent Coccidia (Eimeria). Parasit. Vectors 15, 1–13. (10.1186/s13071-021-05119-0) PubMed DOI PMC

Buuren BS van, Groothuis-Oudshoorn K mice. 2011. Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67. (10.18637/jss.v045.i03) DOI

Piálek J, et al. . 2023. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. bioRxiv 2023. (10.1101/2023.11.05.565684) DOI

Martincová I, Ďureje Ľ, Kreisinger J, Macholán M, Piálek J. 2019. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol. Evol. 9, 6124–6137. (10.1002/ece3.5196) PubMed DOI PMC

Gregorová S, Forejt J. 2000. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies--a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol. (Praha) 46, 31–41. PubMed

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583. (10.1038/nmeth.3869) PubMed DOI PMC

Heitlinger E. 2019. MultiAmplicon. See https://derele.github.io/MultiAmplicon/index.html.

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14. (10.1186/s40168-018-0605-2) PubMed DOI PMC

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. 2013. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat. Methods 10, 57–59. (10.1038/nmeth.2276) PubMed DOI PMC

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One (ed. Watson M), 8, e61217. (10.1371/journal.pone.0061217) PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. (10.1128/AEM.00062-07) PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6. (10.1093/nar/gks1219) PubMed DOI PMC

Nilsson RH, et al. . 2019. The unite database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. (10.1093/nar/gky1022) PubMed DOI PMC

Robeson MS 2nd, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. 2021. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 17, e1009581. (10.1371/journal.pcbi.1009581) PubMed DOI PMC

Csardi G, Nepusz T. 2006. The igraph software package for complex network research. Inter. J. Complex Syst. 1695, 1–0.

Oksanen J, et al. . 2022. vegan: Community Ecology Package. See https://github.com/vegandevs/vegan.

Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. 2000. Logratio analysis and compositional distance. Math. Geol. 32, 271–275. (10.1023/A:1007529726302) DOI

Gelman A. 2014. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623.

Bürkner PC. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28. (10.18637/jss.v080.i01) DOI

Raulo A, et al. . 2024. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat. Ecol. Evol. 8, 972–985. (10.1038/s41559-024-02381-0) PubMed DOI PMC

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25. (10.1371/journal.pcbi.1004226) PubMed DOI PMC

Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, Bonneau R, Ghedin E. 2018. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6, 1–14. (10.1186/s40168-017-0393-0) PubMed DOI PMC

Balard A, Heitlinger E. 2022. Shifting focus from resistance to disease tolerance: a review on hybrid house mice. Ecol. Evol. 12, 1–15. (10.1002/ece3.8889) PubMed DOI PMC

Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740. (10.1111/j.1462-2920.2005.00956.x) PubMed DOI

Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ. 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664. (10.1038/ismej.2015.142) PubMed DOI PMC

Weinstein SB, Martínez-Mota R, Stapleton TE, Klure DM, Greenhalgh R, Orr TJ, Dale C, Kohl KD, Dearing MD. 2021. Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.) . Proc. Natl Acad. Sci. 118, e2108787118. (10.1073/pnas.2108787118) PubMed DOI PMC

Frynta D, Kaftanová-Eliášová B, Žampachová B, Voráčková P, Sádlová J, Landová E. 2018. Behavioural strategies of three wild-derived populations of the house mouse (Mus m. musculus and M. m. domesticus) in five standard tests of exploration and boldness: searching for differences attributable to subspecies and commensalism. Behav. Processes 157, 133–141. (10.1016/j.beproc.2018.09.008) PubMed DOI

Green CL, et al. . 2022. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 34, 209–226.(10.1016/j.cmet.2021.12.018) PubMed DOI PMC

Hiadlovská Z, Vošlajerová Bímová B, Mikula O, Piálek J, Macholán M. 2013. Transgressive segregation in a behavioural trait? Explorative strategies in two house mouse subspecies and their hybrids. Biol. J. Linn. Soc. Lond 108, 225–235. (10.1111/j.1095-8312.2012.01997.x) DOI

Morrow KH. 2024. Neutral and niche theory in community ecology: a framework for comparing model realism. Biol. Philos. 39, 4. (10.1007/s10539-024-09941-5) DOI

Abbott R, et al. . 2013. Hybridization and speciation. J. Evol. Biol. 26, 229–246. (10.1111/j.1420-9101.2012.02599.x) PubMed DOI

Dubois L, et al. . 2024. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 32, 1011–1024.(10.1016/j.chom.2024.05.004) PubMed DOI

Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111. (10.1086/283241) DOI

Brislawn CJ, et al. . 2019. Forfeiting the priority effect: turnover defines biofilm community succession. ISME J. 13, 1865–1877. (10.1038/s41396-019-0396-x) PubMed DOI PMC

Watson AR, et al. . 2023. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol. 24, 78. (10.1186/s13059-023-02924-x) PubMed DOI PMC

Deveau A, et al. . 2018. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. (10.1093/femsre/fuy008) PubMed DOI

Jarquín-Díaz VH, et al. . 2024. Aberrant microbiomes are associated with increased antibiotic resistance gene load in hybrid mice. ISME Commun. 4. (10.1093/ismeco/ycae053) PubMed DOI PMC

Ferreira SCM. 2024. Ferreira-scm/hybridization_spatial_hmhz: repository supporting manuscript (version v1). Zenodo (10.5281/zenodo.14046297) DOI

Ferreira SCM, Jarquín-Díaz VH, Planillo A, Ďureje Ľ, Martincová I, Kramer-Schadt Set al. . 2024. Supplementary material from: Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mice subspecies and their hybrids. Figshare (10.6084/m9.figshare.c.7571803) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace