The value of GLI1 and p16 immunohistochemistry in the premolecular screening for GLI1-altered mesenchymal neoplasms

. 2024 May ; 484 (5) : 765-775. [epub] 20231108

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37940743

Grantová podpora
P30 CA008748 NCI NIH HHS - United States

Odkazy

PubMed 37940743
PubMed Central PMC11694230
DOI 10.1007/s00428-023-03687-3
PII: 10.1007/s00428-023-03687-3
Knihovny.cz E-zdroje

Mesenchymal neoplasms with GLI1 alterations have recently been reported in several anatomic locations. Their morphology and immunohistochemistry (IHC) are nonspecific, making their recognition a true challenge. To assess the diagnostic value of GLI1 and p16 IHC for identifying GLI1-altered neoplasms, we evaluated 12 such neoplasms (6 GLI1-amplified and 6 with GLI1-fusions) using the GLI1 IHC. Additionally, we evaluated some of their morphological and molecular mimickers, including glomangiomas, Ewing sarcomas (ES), myxoid liposarcomas, and MDM2/CDK4-amplified sarcomas (well-differentiated liposarcoma/WDLPS, dedifferentiated liposarcoma/DDLPS, and intimal sarcoma). All successfully tested GLI1-altered tumors (11/11) demonstrated at least moderate/strong nuclear and/or cytoplasmic GLI1 IHC positivity. GLI1-amplified tumors exhibited a moderate/strong predominantly nuclear staining, compared to a moderate, patchy, and predominantly cytoplasmic GLI1 positivity in GLI1-fusion tumors. Among their mimics, GLI1 immunoreactivity, either cytoplasmic or nuclear, was observed in intimal sarcoma (3/3) and WDLPS/DDLPS (22/25). GLI1 IHC demonstrated 92% sensitivity and 90.8% specificity in diagnosing GLI1-altered neoplasms. Strong/moderate nuclear/cytoplasmic p16 immunoexpression was noted in all GLI1-amplified tumors compared to none of fused cases. Overall, the GLI1/p16 combination demonstrated a sensitivity and specificity of 100% and 93% for GLI1-amplified tumors. In conclusion, we confirm that GLI1 IHC represents a good, quick, and cheap helpful screening tool. The inclusion of p16 may aid in pre-screening for potential GLI1-amplified neoplasms and provide insights on which tumors warrant further molecular testing.

Zobrazit více v PubMed

Chetty R (2020) Gene of the month: GLI-1. J Clin Pathol 73:228–230. doi: 10.1136/jclinpath-2020-206431. PubMed DOI

Antonescu CR, Agaram NP, Sung YS, Zhang L, Swanson D, Dickson BC (2018) A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression, and metastatic potential: expanding the spectrum of pathologic entities with ACTB/MALAT1/PTCH1-GLI1 fusions. Am J Surg Pathol 42:553–560. doi: 10.1097/PAS.0000000000001010. PubMed DOI PMC

Agaram NP, Zhang L, Sung YS, Singer S, Stevens T, Prieto-Granada CN, Bishop JA, Wood BA, Swanson D, Dickson BC, Antonescu CR (2019) GLI1-amplifications expand the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol 32:1617–1626. doi: 10.1038/s41379-019-0293-x. PubMed DOI PMC

Parrack PH, Mariño-Enríquez A, Fletcher CDM, Hornick JL, Papke DJ Jr (2023) GLI1 Immunohistochemistry Distinguishes Mesenchymal Neoplasms With GLI1 Alterations From Morphologic Mimics. Am J Surg Pathol 47:453–460. doi: 10.1097/PAS.0000000000002018. PubMed DOI

Papke DJ Jr, Dickson BC, Oliveira AM, Sholl LM, Fletcher CDM (2023) Distinctive Nested Glomoid Neoplasm: Clinicopathologic Analysis of 20 Cases of a Mesenchymal Neoplasm With Frequent GLI1 Alterations and Indolent Behavior. Am J Surg Pathol 47:12–24. doi: 10.1097/PAS.0000000000001979. PubMed DOI

Dahlén A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debiec-Rychter M, Sciot R, Wejde J, Wedin R, Mandahl N, Panagopoulos I (2004) Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 164:1645–53. doi: 10.1016/s0002-9440(10)63723-6. PubMed DOI PMC

Dahlén A, Mertens F, Mandahl N, Panagopoulos I (2004) Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 325:1318–23. doi: 10.1016/j.bbrc.2004.10.172. PubMed DOI

Bridge JA, Sanders K, Huang D, Nelson M, Neff JR, Muirhead D, Walker C, Seemayer TA, Sumegi J. Pericytoma with t(7;12) and ACTB-GLI1 fusion arising in bone (2012) Hum Pathol 43:1524–9. doi: 10.1016/j.humpath.2012.01.019. PubMed DOI PMC

Castro E, Cortes-Santiago N, Ferguson LM, Rao PH, Venkatramani R, López-Terrada D (2016) Translocation t(7;12) as the sole chromosomal abnormality resulting in ACTB-GLI1 fusion in pediatric gastric pericytoma. Hum Pathol 53:137–41. doi: 10.1016/j.humpath.2016.02.015. PubMed DOI

Spans L, Fletcher CD, Antonescu CR, Rouquette A, Coindre JM, Sciot R, Debiec-Rychter M (2016) Recurrent MALAT1-GLI1 oncogenic fusion and GLI1 up-regulation define a subset of plexiform fibromyxoma. J Pathol 239:335–43. doi: 10.1002/path.4730. PubMed DOI PMC

Graham RP, Nair AA, Davila JI, Jin L, Jen J, Sukov WR, Wu TT, Appelman HD, Torres-Mora J, Perry KD, Zhang L, Kloft-Nelson SM, Knudson RA, Greipp PT, Folpe AL (2017) Gastroblastoma harbors a recurrent somatic MALAT1-GLI1 fusion gene. Mod Pathol 30(10):1443–1452. doi: 10.1038/modpathol.2017.68. PubMed DOI

Didiasova M, Schaefer L, Wygrecka M (2018) Targeting GLI transcription factors in cancer. Molecules 23:1003. doi: 10.3390/molecules23051003. PubMed DOI PMC

Kerr DA, Pinto A, Subhawong TK, Wilky BA, Schlumbrecht MP, Antonescu CR, Nielsen GP, Rosenberg AE (2019) Pericytoma With t(7;12) and ACTB-GLI1 Fusion: Reevaluation of an Unusual Entity and its Relationship to the Spectrum of GLI1 Fusion-related Neoplasms. Am J Surg Pathol 43:1682–1692. doi: 10.1097/PAS.0000000000001360. PubMed DOI PMC

Xu B, Chang K, Folpe AL, Kao YC, Wey SL, Huang HY, Gill AJ, Rooper L, Bishop JA, Dickson BC, Lee JC, Antonescu CR (2020) Head and Neck Mesenchymal Neoplasms With GLI1 Gene Alterations: A Pathologic Entity With Distinct Histologic Features and Potential for Distant Metastasis. Am J Surg Pathol 44:729–737. doi: 10.1097/PAS.0000000000001439. PubMed DOI PMC

Argani P, Boyraz B, Oliva E, Matoso A, Gross J, Fridman E, Zhang L, Dickson BC, Antonescu CR (2022) GLI1 Gene Alterations in Neoplasms of the Genitourinary and Gynecologic Tract. Am J Surg Pathol 46(5):677–687. doi: 10.1097/PAS.0000000000001844. PubMed DOI PMC

Liu J, Mao R, Lao IW, Yu L, Bai Q, Zhou X, Wang J (2022) GLI1-altered mesenchymal tumor: a clinicopathological and molecular analysis of ten additional cases of an emerging entity. Virchows Arch 480:1087–1099. doi: 10.1007/s00428-021-03224-0. PubMed DOI

Rollins BT, Cassarino DS, Lindberg M (2022) Primary cutaneous epithelioid mesenchymal neoplasm with ACTB-GLI1 fusion: a case report. J Cutan Pathol 49:284–287. doi: 10.1111/cup.14152. PubMed DOI

Avery JT, Zhang R, Boohaker RJ (2021) GLI1: a therapeutic target for cancer. Front Oncol 25;11:673154. doi: 10.3389/fonc.2021.673154. PubMed DOI PMC

Pettus JR, Kerr DA, Stan RV, Tse JY, Sverrisson EF, Bridge JA, Linos K (2021) Primary myxoid and epithelioid mesenchymal tumor of the kidney with a novel GLI1-FOXO4 fusion. Genes Chromosomes Cancer 60:116–122. doi: 10.1002/gcc.22916. PubMed DOI

Nitta Y, Takeda M, Fujii T, Itami H, Tsukamoto S, Honoki K, Ohbayashi C (2021) A case of pericytic neoplasm in the shoulder with a novel DERA-GLI1 gene fusion. Histopathology 78:466–469. doi: 10.1111/his.14280. PubMed DOI

Jessurun J, Orr C, McNulty SN, Hagen CE, Alnajar H, Wilkes D, Kudman S, Al Assaad M, Dorsaint P, Ohara K, He F, Chiu K, Yin YM, Xiang JZ, Qin L, Sboner A, Elemento O, Yantiss RK, Graham RP, Poizat F, Mosquera JM (2023) GLI1 -Rearranged Enteric Tumor : Expanding the Spectrum of Gastrointestinal Neoplasms With GLI1 Gene Fusions. Am J Surg Pathol 47:65–73. doi: 10.1097/PAS.0000000000001950. PubMed DOI

Liu Y, Huang J, Sun J, Su M, Yang D, Zhao M, Huang Q (2022) GLI1 amplified/fused mesenchymal tumor: A case report and review of the literature. Oral Oncol 129:105897. doi: 10.1016/j.oraloncology.2022.105897. PubMed DOI

Shahabi A, Israel AK, Sullivan CB, McHugh KE (2022) Fine needle aspiration biopsy of epithelioid-mesenchymal neoplasm with PTCH1-GLI1 fusion: A case report. Diagn Cytopathol 50:E223–E229. doi: 10.1002/dc.24971. PubMed DOI

Palsgrove DN, Rooper LM, Stevens TM, Shin C, Damm DD, Gagan J, Bridge JA, Thompson LDR, Koduru PR, Bishop JA (2022) GLI1-Altered Soft Tissue Tumors of the Head and Neck: Frequent Oropharyngeal Involvement, p16 Immunoreactivity, and Detectable Alterations by DDIT3 Break Apart FISH. Head Neck Pathol 16:1146–1156. doi: 10.1007/s12105-022-01476-z. PubMed DOI PMC

Hui L, Bai Q, Yang W, Xiaoyu T, Yao Q, Zhou X, Rui B (2022) GLI1-rearranged mesenchymal tumor in the ovary. Histopathology 81:688–692. doi: 10.1111/his.14785. PubMed DOI

Machado I, Hosler GA, Traves V, Claramunt R, Sanmartín O, Santonja C, Carvajal N, Zazo S, Requena L, Alfonso VS, Domenech EV, Llombart-Bosch A, Bridge JA, Linos K (2023) Superficial GLI1-amplified mesenchymal neoplasms: Expanding the spectrum of an emerging entity which reaches the realm of dermatopathology. J Cutan Pathol 50:487–499. doi: 10.1111/cup. PubMed DOI

Roberts WM, Douglass EC, Peiper SC, Houghton PJ, Look AT (1989) Amplification of the GLI gene in childhood sarcomas. Cancer Res 49:5407–13. PubMed

Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT (1993) Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 53:5535–41. PubMed

Stein U, Eder C, Karsten U, Haensch W, Walther W, Schlag PM (1999) GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res 59:1890–5. PubMed

Mosquera JM, Sboner A, Zhang L, Chen CL, Sung YS, Chen HW, Agaram NP, Briskin D, Basha BM, Singer S, Rubin MA, Tuschl T, Antonescu CR (2013) Novel MIR143-NOTCH fusions in benign and malignant glomus tumors. Genes Chromosomes Cancer 52:1075–87. doi: 10.1002/gcc.22102. PubMed DOI PMC

Sioletic S, Dal Cin P, Fletcher CD, Hornick JL (2013) Well-differentiated and dedifferentiated liposarcomas with prominent myxoid stroma: analysis of 56 cases. Histopathology 62:287–93. doi: 10.1111/j.1365-2559.2012.04348.x. PubMed DOI

Thway K, Jones RL, Noujaim J, Zaidi S, Miah AB, Fisher C (2016) Dedifferentiated Liposarcoma: Updates on Morphology, Genetics, and Therapeutic Strategies. Adv Anat Pathol 23:30–40. doi: 10.1097/PAP.0000000000000101. PubMed DOI

Thway K (2019) Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin Diagn Pathol 36:112–121. doi: 10.1053/j.semdp.2019.02.006. PubMed DOI

Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H (2012) NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma. Am J Surg Pathol 36:993–9. doi: 10.1097/PAS.0b013e31824ee43c. PubMed DOI

Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of NKX2–2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 29:370–80. doi: 10.1038/modpathol.2016.31. PubMed DOI

Giner F, Machado I, Rubio-Martínez LA, López-Guerrero JA, Claramunt-Alonso R, Navarro S, Ferrández A, Mayordomo-Aranda E, Llombart-Bosch A (2023) Intimal Sarcoma with MDM2/CDK4 Amplification and p16 Overexpression: A Review of Histological Features in Primary Tumor and Xenograft, with Immunophenotype and Molecular Profiling. Int J Mol Sci 24:7535. doi: 10.3390/ijms24087535. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...