Biallelic inactivation of the NF1 tumour suppressor gene in juvenile myelomonocytic leukaemia: Genetic evidence of driver function and implications for diagnostic workup
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
EkoEstMed-FKZ 01ZZ2015
Bundesministerium für Bildung und Forschung
MIRACUM-FKZ 01ZZ1801B
Bundesministerium für Bildung und Forschung
MyPred 01GM1911A
Bundesministerium für Bildung und Forschung
CRC/TRR167-Z01
Deutsche Forschungsgemeinschaft
CRC1160-Z02
Deutsche Forschungsgemeinschaft
CRC1453-S1
Deutsche Forschungsgemeinschaft
CRC1479-S1
Deutsche Forschungsgemeinschaft
CRC992-C05
Deutsche Forschungsgemeinschaft
DJCLS 15R/2022
José Carreras Leukämie-Stiftung
PubMed
37945316
DOI
10.1111/bjh.19190
Knihovny.cz E-resources
- Keywords
- NF1, JMML, RAS signalling, juvenile myelomonocytic leukaemia, neurofibromatosis type 1, neurofibromin,
- MeSH
- Child MeSH
- Leukemia, Myelomonocytic, Juvenile * genetics MeSH
- Humans MeSH
- Mutation MeSH
- Neurofibromatosis 1 * genetics MeSH
- Signal Transduction MeSH
- Genes, Tumor Suppressor MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.
Department of Hematology and Oncology Hospital Sant Joan de Déu Barcelona Spain
Department of Pediatric Hematology and Oncology Oslo University Hospital Oslo Norway
Department of Pediatric Oncology Hematology Skåne University Hospital Lund Sweden
Department of Pediatrics Aarhus University Hospital Skejby Aarhus Denmark
Faculty of Biology University of Freiburg Freiburg Germany
German Cancer Consortium partner site Freiburg Freiburg Germany
Human Genetics University of Magdeburg Magdeburg Germany
Princess Maxima Center for Pediatric Oncology Utrecht Netherlands
See more in PubMed
Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood. 2019;133(10):1060-1070.
Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51(10):689-697.
Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794-800.
Shannon KM, O'Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330(9):597-601.
Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021;23(8):1506-1513.
Lammert M, Friedman JM, Kluwe L, Mautner VF. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol. 2005;141(1):71-74.
Rasmussen SA, Friedman JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol. 2000;151(1):33-40.
Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70(5):969-972.
Jett K, Friedman JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010;12(1):1-11.
Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M, et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med. 1997;336(24):1713-1720.
Upadhyaya M, Kluwe L, Spurlock G, Monem B, Majounie E, Mantripragada K, et al. Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat. 2008;29(1):74-82.
Serra E, Puig S, Otero D, Gaona A, Kruyer H, Ars E, et al. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet. 1997;61(3):512-519.
De Schepper S, Maertens O, Callens T, Naeyaert JM, Lambert J, Messiaen L. Somatic mutation analysis in NF1 cafe au lait spots reveals two NF1 hits in the melanocytes. J Invest Dermatol. 2008;128(4):1050-1053.
Gutmann DH, McLellan MD, Hussain I, Wallis JW, Fulton LL, Fulton RS, et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 2013;23(3):431-439.
Flotho C, Steinemann D, Mullighan CG, Neale G, Mayer K, Kratz CP, et al. Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11. Oncogene. 2007;26(39):5816-5821.
Steinemann D, Arning L, Praulich I, Stuhrmann M, Hasle H, Stary J, et al. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica. 2010;95(2):320-323.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-576.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079.
Cingolani P. Variant annotation and functional prediction: SnpEff. Methods Mol Biol. 2022;2493:289-314.
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100(2):267-280.
Richards S, Aziz N, Bale S, Bick D, das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
van Minkelen R, van Bever Y, Kromosoeto JN, Withagen-Hermans CJ, Nieuwlaat A, Halley DJ, et al. A clinical and genetic overview of 18 years neurofibromatosis type 1 molecular diagnostics in The Netherlands. Clin Genet. 2014;85(4):318-327.
Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011;32(5):557-563.
Bonatti F, Adorni A, Matichecchia A, Mozzoni P, Uliana V, Pisani F, et al. Patterns of novel alleles and genotype/phenotype correlations resulting from the analysis of 108 previously undetected mutations in patients affected by neurofibromatosis type I. Int J Mol Sci. 2017;18(10):2071.
Caye A, Strullu M, Guidez F, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334-1340.
Stephens K, Weaver M, Leppig KA, Maruyama K, Emanuel PD, le Beau MM, et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood. 2006;108(5):1684-1689.
Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet. 2021;140(12):1635-1649.
Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi Y, Takahashi M, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937-941.
Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326-1333.
Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nöllke P, et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2126.
Kluwe L, Siebert R, Gesk S, Friedrich RE, Tinschert S, Kehrer-Sawatzki H, et al. Screening 500 unselected neurofibromatosis 1 patients for deletions of the NF1 gene. Hum Mutat. 2004;23(2):111-116.
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet. 2022;141(2):177-191.
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228.
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703-1719.